Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128103    DOI: 10.1088/1674-1056/ab53cd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface

Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃)
State Key Discipline Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  We report the simultaneous enlarged growth of seven single crystal diamond (SCD) plates free from polycrystalline diamond (PCD) rim by using a microwave plasma chemical vapor deposition (MPCVD) system. Optical microscope and atomic force microscope (AFM) show the typical step-bunching SCD morphology at the center, edge, and corner of the samples. The most aggressively expanding sample shows a top surface area three times of that of the substrate. The effective surface expanding is attributed to the utilization of the diamond substrates with (001) side surfaces, the spacial isolation of them to allow the sample surface expanding, and the adoption of the reported pocket holder. Nearly constant temperature of the diamond surfaces is maintained during growth by only decreasing the sample height, and thus all the other growth parameters can be kept unchanged to achieve high quality SCDs. The SCDs have little stress as shown by the Raman spectra. The full width at half maximum (FWHM) data of both the Raman characteristic peak and (004) x-ray rocking curve of the samples are at the same level as those of the standard CVD SCD from Element Six Ltd. The nonuniformity of the sample thickness or growth rate is observed, and photoluminescence spectra show that the nitrogen impurity increases with increasing growth rate. It is found that the reduction of the methane ratio in the sources gas flow from 5% to 3% leads to decrease of the vertical growth rate and increase of the lateral growth rate. This is beneficial to expand the top surface and improve the thickness uniformity of the samples. At last, the convenience of the growth method transferring to massive production has also been demonstrated by the successful simultaneous enlarged growth of 14 SCD samples.
Keywords:  diamond      chemical vapour deposition      crystal growth      expanded top surface      polycrystalline diamond rimless  
Received:  27 May 2019      Revised:  18 September 2019      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0406504 and 2016YFB0400105) and the National Postdoctoral Program for Innovative Talents, China (Grant No. BX20190263).
Corresponding Authors:  Jin-Feng Zhang     E-mail:  jfzhang@xidian.edu.cn

Cite this article: 

Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃) Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface 2019 Chin. Phys. B 28 128103

[1] Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[2] Achard J, Silva F, Tallaire A, Bonnin X, Lombardi G, Hassouni K and Gicquel A 2007 J. Phys. D: Appl. Phys. 40 6175
[3] Yan C S, Vohra Y K, Mao H K and Hemley R J 2002 Proc. Natl. Acad. Sci. USA 99 12523
[4] Wang J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Han F, Yu K P and Ma H A 2019 Chin. Phys. Lett. 36 046101
[5] Chayahara A, Mokuno Y, Horino Y, Takasu Y, Kato H, Yoshikawa H and Fujimori N 2004 Diamond Relat. Mater. 13 1954
[6] Bolshakov A P, Ralchenko V G, Yurov V Y, Popovich, A F, Antonova I A, Khomich A A, Ashkinazi E E, Ryzhkov S G, Vlasov A V and Khomich A V 2016 Diamond Relat. Mater. 62 49
[7] Zhao Y, Guo Y, Lin L, Zheng Y, Hei L, Liu J, Wei J, Chen L and Li C 2018 J. Cryst. Growth 491 89
[8] Liu J, Lin L, Zhao Y, Zheng Y, An K, Wei J, Chen L, Hei L, Wang J, Feng Z and Li C 2018 Vacuum 155 391
[9] Geis M W, Efremow N N, Susalka R, Twichell J C, Snail K A, Spiro C, Sweeting B and Holly S 1994 Diamond Relat. Mater. 4 76
[10] Tallaire A, Achard J, Secroun A, De Gryse O, De Weerdt F, Barjon J, Silva F and Gicquel A 2006 J. Cryst. Growth 291 533
[11] Yamada H, Chayahara A Y, Kato Y and Shikata S 2014 Appl. Phys. Lett. 104 102110
[12] Yamada H, Chayahara A, Mokuno Y, Tsubouchi N, Shikata S and Fujimori N 2011 Diamond Relat. Mater. 20 616
[13] Asmussen J, Grotjohn T A, Schuelke T and Becker M F 2008 Appl. Phys. Lett. 93 031502
[14] Nad S and Asmussen J 2016 Diamond Relat. Mater. 66 36
[15] Charris A, Nad S and Asmussen J 2017 Diamond Relat. Mater. 76 58
[16] Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Su K, Li Y and Hao Y 2018 Chin. Phys. Lett. 35 078101
[17] Yamada H, Chayahara A and Mokuno Y 2016 Jpn. J. Appl. Phys. S 55 01AC07
[18] Tallaire A, Achard J, Silva F, Brinza O and Gicquel A 2013 CR Phys. 14 169
[19] Prawer S and Nemanich R J 2004 Philos. Trans. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 362 2537
[20] Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lue J N, Lue X Y and Jin Z S 2008 Chin. Phys. Lett. 25 1803
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[4] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[9] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[10] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[11] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
[12] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[13] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[14] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[15] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
No Suggested Reading articles found!