Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 126802    DOI: 10.1088/1674-1056/ab5277
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe

Jinli Cao(曹金利)1,2, Wen Yang(杨文)1, Xinfu He(贺新福)1
1 Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The migration of lanthanide fission products to cladding materials is recognized as one of the key causes of fuel-cladding chemical interaction (FCCI) in metallic fuels during operation. We have performed first-principles density functional theory calculations to investigate the segregation behavior of lanthanide fission products (La, Ce, Pr, and Nd) and their effects on the intergranular embrittlement at Σ3(111) tilt symmetric grain boundary (GB) in α-Fe. It is found that La and Ce atoms tend to reside at the first layer near the GB with segregation energies of -2.55 eV and -1.60 eV, respectively, while Pr and Nd atoms prefer to the core mirror plane of the GB with respective segregation energies of -1.41 eV and -1.50 eV. Our calculations also show that La, Ce, Pr, and Nd atoms all act as strong embrittlers with positive strengthening energies of 2.05 eV, 1.52 eV, 1.50 eV, and 1.64 eV, respectively, when located at their most stable sites. The embrittlement capability of four lanthanide elements can be determined by the atomic size and their magnetism characters. The present calculations are helpful for understanding the behavior of fission products La, Ce, Pr, and Nd in α-Fe.
Keywords:  first-principles      fuel-cladding chemical interaction (FCCI)      fission products      grain boundary segregation  
Received:  27 September 2019      Revised:  23 October 2019      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1867217), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2019ZX06004009), and the China National Nuclear Corporation Centralized Research and Development Project (Grant No. FY18000120).
Corresponding Authors:  Xinfu He     E-mail:  xinfuhe@gmail.com

Cite this article: 

Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福) Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe 2019 Chin. Phys. B 28 126802

[1] Delage F, CarmackbC J, Leec B, Mizunod T, Pelletiera M and Somerse J 2013 J. Nucl. Mater. 441 515
[2] Carmack W J 2009 J. Nucl. Mater. 392 139
[3] Hofman G L, Walters L C and Bauer T H 1997 Prog. Nucl. Energ. 31 83
[4] Cohen A B, Tsai H and Neimark L A 1993 J. Nucl. Mater. 204 244
[5] Xie Y, Zhang J S, Benson M T, King J A and Mariani R D 2019 J. Nucl. Mater. 513 175
[6] Xie Y, Benson M T, King J A, Mariani R D and Zhang J S 2018 J. Nucl. Mater. 498 332
[7] Ogata T, Kurata M, Nakamura K, Itoh A and Akabori M 1997 J. Nucl. Mater. 250 171
[8] Matthews C, Unal C, Galloway J, Dennis D K J and Hayes S L 2017 Nucl. Technol. 198 231
[9] Kim J H 2014 Met. Mater. Int. 20 819
[10] Kim J H 2012 J. Rare Earths 30 599
[11] Chuang Y C, Wu C H and Shao Z B 1987 J. Less Common Met. 136 147
[12] Liu C M, Nagoya T, Abiko K and Kimura H 1992 Metall. Trans. A 23 263
[13] Lee D Y, Barrera E V, Stark J P and Marcus H L 1984 Metall. Trans. A 15 1415
[14] Kimura A and Kimura H 1986 Mater. Sci. Eng. 77 75
[15] Rice J R and Wang J S 1989 Mater. Sci. Eng. A 107 23
[16] Krasko G L and Olson G 1991 Solid State Commun. 79 113
[17] Wu R, Freeman A J and Olson G B 1994 Science 265 376
[18] Geng W T, Freeman A J and Olson G B 2001 Phys. Rev. B 63 165415
[19] Mariani R D 2011 J. Nucl. Mater. 419 263
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[22] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Zhang L F 2018 Inorg. Chem. 57 12690
[28] Chen L L 2019 Com. Mater. Sci. 161 415
[29] Hao W and Geng W T 2010 Nucl. Instru. Methods Phys. Res. B 280 22
[30] McLean Donald 1957 Grain boundaries in metals (Oxford: Oxford University Press) p. 347
[31] Zhang J S 2017 Studies of Lanthanide transport in metallic fuel, Chapter 8
[32] Tian Z X, Yan J X, Xiao W and Geng W T 2009 Phys. Rev. B 79 144114
[33] Wachowicz E, Ossowski T and Kiejna A 2010 Phys. Rev. B 81 094104
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!