Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104212    DOI: 10.1088/1674-1056/ab4175
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single event upset on static random access memory devices due to spallation, reactor, and monoenergetic neutrons

Xiao-Ming Jin(金晓明), Wei Chen(陈伟), Jun-Lin Li(李俊霖), Chao Qi(齐超), Xiao-Qiang Guo(郭晓强), Rui-Bin Li(李瑞宾), Yan Liu(刘岩)
State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  

This paper presents new neutron-induced single event upset (SEU) data on the SRAM devices with the technology nodes from 40 nm to 500 nm due to spallation, reactor, and monoenergetic neutrons. The SEU effect is investigated as a function of incident neutron energy spectrum, technology node, byte pattern and neutron fluence rate. The experimental data show that the SEU effect mainly depends on the incident neutron spectrum and the technology node, and the SEU sensitivity induced by low-energy neutrons significantly increases with the technology downscaling. Monte-Carlo simulations of nuclear interactions with device architecture are utilized for comparing with the experimental results. This simulation approach allows us to investigate the key parameters of the SEU sensitivity, which are determined by the technology node and supply voltage. The simulation shows that the high-energy neutrons have more nuclear reaction channels to generate more secondary particles which lead to the significant enhancement of the SEU cross-sections, and thus revealing the physical mechanism for SEU sensitivity to the incident neutron spectrum.

Keywords:  neutron SRAM      SEU      cross-section  
Received:  21 June 2019      Revised:  31 July 2019      Accepted manuscript online: 
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  61.80.Hg (Neutron radiation effects)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11690040 and 11690043) and the Foundation of State Key Laboratory of China (Grant Nos. SKLIPR1801Z and 6142802180304).

Corresponding Authors:  Xiao-Ming Jin     E-mail:  jinxiaoming_2007@tsinghua.org.cn

Cite this article: 

Xiao-Ming Jin(金晓明), Wei Chen(陈伟), Jun-Lin Li(李俊霖), Chao Qi(齐超), Xiao-Qiang Guo(郭晓强), Rui-Bin Li(李瑞宾), Yan Liu(刘岩) Single event upset on static random access memory devices due to spallation, reactor, and monoenergetic neutrons 2019 Chin. Phys. B 28 104212

[1] Miller F, Weulersse C, Carriere T, Guibbaud N, Morand S and Gaillard R 2013 IEEE Trans. Nucl. Sci. 60 2789
[2] Hirokawa S, Harada R, Hashimoto M and Onoye T 2015 IEEE Trans. Nucl. Sci. 62 420
[3] Lambert D, Desnoyers F, Thouvenot D, Riant O, Galinat J, Azais B and Colladant T 2017 IEEE Radiation Effects Data Workshop (REDW)
[4] Clemente J A, Hubert G, Fraire J, Franco F J, Villa F, Rey S, Baylac M, Puchner H, Mecha H and Velazco R 2018 IEEE Trans. Nucl. Sci. 65 1858
[5] Clemente J A, Hubert G, Franco F J, Villa F, Baylac M, Mecha H, Puchner H and Velazco R 2017 IEEE Trans. Nucl. Sci. 64 2188
[6] Armani J M, Simon G and Poirot P 2004 IEEE Trans. Nucl. Sci. 51 2811
[7] Neale A and Sachdev M 2016 IEEE Trans. Nucl. Sci. 63 1912
[8] Weulersse C, Guibbaud N, Beltrando A, Galinat J, Beltrando C, Miller F, Trochet P and Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268
[9] Lambert D, Baggio J, Cavrois V F, Flament O, Saigné F, Sagnes B, Buard N and Carriére T 2004 IEEE Trans. Nucl. Sci. 51 3435
[10] Lambert D, Baggio J, Hubert G, Paillet P, Girard S, Cavrois V F, Flament O, Saigné F, Boch J, Sagnes B, Buard N and Carriére T 2006 IEEE Trans. Nucl. Sci. 53 1890
[11] Lambert D, Baggio J, Hubert G, Cavrois V F, Flament O, Saigné F, Wrobel F, Duarte H, Boch J, Sagnes B, Buard N and Carriére T 2005 IEEE Trans. Nucl. Sci. 52 2332
[12] Baggio J, Lambert D, Cavrois V F, Paillet P, Marcandella C and Duhamel O 2007 IEEE Trans. Nucl. Sci. 54 2149
[13] Flament O, Baggio J, D'hose C, Gasiot G and Leray J L 2004 IEEE Trans. Nucl. Sci. 51 2908
[14] Zhang L Y, Jing H T, Tang J Y and Wang X Q 2016 Radiation Physics and Chemistry 127 133
[15] Chen L X, Tang X B, Jiang X B, Chen D and Zhao Z M 2016 Radiation Physics and Chemistry 56 137
[16] Caswell R S, Coyne J J and Randolph M L 1980 Radiation Research 83 217
[17] 2007 Standard practice for characterizing neutron energy fluence spectra in terms of an equivalent mono-energetic neutron fluence for radiation-hardness testing of electronics (Annual book of ASTM Standards E 722-04)
[1] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[4] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[5] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[6] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[7] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] A novel polarization converter based on the band-stop frequency selective surface
Kun Liao(廖昆), Shining Sun(孙世宁), Xinyuan Zheng(郑昕原), Xianxian Shao(邵纤纤), Xiangkun Kong(孔祥鲲), and Shaobin Liu(刘少斌). Chin. Phys. B, 2022, 31(2): 024211.
[10] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[11] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[12] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[13] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[14] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[15] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
No Suggested Reading articles found!