Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104301    DOI: 10.1088/1674-1056/ab3f93
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical framework for geoacoustic inversion by adjoint method

Yang Wang(汪洋)1,2, Xiao-Feng Zhao(赵小峰)2,3
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China;
3 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China
Abstract  Traditional geoacoustic inversions are generally solved by matched-field processing in combination with meta-heuristic global searching algorithms which usually need massive computations. This paper proposes a new physical framework for geoacoustic retrievals. A parabolic approximation of wave equation with non-local boundary condition is used as the forward propagation model. The expressions of the corresponding tangent linear model and the adjoint operator are derived, respectively, by variational method. The analytical expressions for the gradient of the cost function with respect to the control variables can be formulated by the adjoint operator, which in turn can be used for optimization by the gradient-based method.
Keywords:  geoacoustic inversion      adjoint method      parabolic equation      non-local boundary condition  
Received:  21 July 2019      Revised:  26 August 2019      Accepted manuscript online: 
PACS:  43.30.Pc (Ocean parameter estimation by acoustical methods; remote sensing; imaging, inversion, acoustic tomography)  
  43.30.Ma (Acoustics of sediments; ice covers, viscoelastic media; seismic underwater acoustics)  
  02.30.Zz (Inverse problems)  
Fund: Project supported by the Foundation of Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, China (Grant No. SJTU-MIES1908) and the National Natural Science Foundation of China (Grant No. 41775027).
Corresponding Authors:  Xiao-Feng Zhao     E-mail:  zxf_best@126.com

Cite this article: 

Yang Wang(汪洋), Xiao-Feng Zhao(赵小峰) Theoretical framework for geoacoustic inversion by adjoint method 2019 Chin. Phys. B 28 104301

[1] Wynn R B, Huvenne V, Bas T, Murton B J, Connelly D P, Bett B J, Ruhl H A, Morris K J, Peakall J, Parsons D R, Sumner E J, Darby S E, Dorrell R M and Hunt J E 2014 Marine Geology 352 451
[2] Yuh J 2000 Autonomous Robots 8 7
[3] Headrick R and Freitag L 2009 IEEE Commun. Mag. 47 80
[4] Li M Z, Li Z L, Zhou J X and Zhang R H 2019 Acta Phys. Sin. 68 094301 (in Chinese)
[5] Han S P and Li F H 2007 Chin. Phys. Lett. 24 1977
[6] Wu S, Li Z and Qin J 2018 J. Acoust. Soc. Am. 144 1736
[7] Gingras D F and Gerstoft P 1995 J. Acoust. Soc. Am. 97 3589
[8] Lindsay C E and Chapman N R 1993 IEEE J. Oceanic Eng. 18 224
[9] Dettmer J, Dosso S E, Holl and C W 2011 J. Acoust. Soc. Am. 129 1794
[10] Zhan P, Gopalakrishnan G, Subramanian A C, Guo D and Hoteit I 2018 J. Geophys. Res.: Oceans 123 8329
[11] Zhao X 2018 Chin. Phys. B 27 128401
[12] Zhao X and Wang D 2015 J. Acoust. Soc. Am. 138 3733
[13] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics (Michigan: Springer)
[14] Yevick D and Thomson D J 1999 J. Acoust. Soc. Am. 106 143
[15] Tarantola A 2005 In verse Problem Theory and Methods for Model Parameter Estimation (Philadelphia: SIAM)
[16] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer Academic)
[17] Huang S X and Wu R S 2005 Mathematical Physics Problems in Atmospheric Science (Beijing: Meteorology)
[1] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[2] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[3] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[4] “Refractivity-from-clutter” based on local empirical refractivity model
Xiaofeng Zhao(赵小峰). Chin. Phys. B, 2018, 27(12): 128401.
[5] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[6] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[7] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao (董灏), Nie Yu-Feng (聂玉峰), Cui Jun-Zhi (崔俊芝), Wu Ya-Tao (武亚涛). Chin. Phys. B, 2015, 24(9): 090204.
[8] Estimation of lower refractivity uncertainty from radar sea clutter using Bayesian-MCMC method
Sheng Zheng (盛峥). Chin. Phys. B, 2013, 22(2): 029302.
No Suggested Reading articles found!