Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093101    DOI: 10.1088/1674-1056/ab3437

Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study

Camile Rodolphe Tchenguem Kamto1, Bridinette Thiodjio Sendja2, Jeannot Mane Mane2,3
1 University of Yaounde I, Faculty of Science, Department of Physics, Yaounde, Cameroon;
2 University of Yaounde I, National Advanced School of Engineering, Department of Mathematic and Physical Science, Yaounde, Cameroon;
3 University of Dschang, Dschang, Cameroon

The multi-walled carbon nanotubes (MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition (CCVD) process, and were thermally annealed by the hot filament plasma enhanced (HF PE) method at 550℃ for two hours. The x-ray absorption near edge structure (XANES) technique was used to investigate the adsorption and desorption phenomena of the MWCNTs at normal and grazing incidence angles. The adsorbates were found to have different sensitivities to the thermal annealing. The geometry of the incident beam consistently gave information about the adsorption and desorption phenomena. In addition, the adsorption of non-intrinsic potassium quantitatively affected the intrinsic adsorbates and contributed to increase the conductivity of the MWCNTs. The desorption of potassium was almost 70% greater after the thermal annealing. The potassium non-intrinsic adsorbates are from a physisorption mechanism whereas the intrinsic adsorbates result from chemisorption.

Keywords:  multi-walled carbon nanotubes      thermal annealing      adsorption      desorption  
Received:  15 May 2019      Revised:  12 July 2019      Published:  05 September 2019
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding) (Electronic structure and bonding characteristics)  
  32.30.Rj (X-ray spectra)  
  82.80.Dx (Analytical methods involving electronic spectroscopy)  
Corresponding Authors:  Bridinette Thiodjio Sendja     E-mail:

Cite this article: 

Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study 2019 Chin. Phys. B 28 093101

[1] Iijima S 1991 Nature 354 56
[2] Dresselhaus M S, Dresselhaus G and Avouris P 2001 Carbon Nanotubes:Synthesis, Structure, Properties And Applications (Berlin:Springer) p. 29
[3] Cojocaru C S 2003(Ph. D Thesis) (Université Louis Pasteur, Strasbourg I)
[4] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E and Smalley R E 1996 Science 273 483
[5] Lin K S, Mai Y J, Li S R, Shu C W and Wang C H 2012 J. Nanomater 939683
[6] Huang W, Wang Y, Luo G and Wie F 2003 Carbon 41 2585
[7] Eba Medjo R, Thiodjio Sendja B, Mane Mane J and Owono Ateba P 2009 Phys. Scr. 80 045601
[8] Cojocaru C S and Le Normand F 2006 Thin Solid Films 515 53
[9] Taschner C, Pacal F, Leonhardt A, Spatenka P, Bartsch K, Graff A and Kaltofen R 2003 Surf. Coat. Technol. 174-175 81
[10] Hatton R A, Blanchard N P, Miller A J and Silva S R P 2007 Physica E 37 124
[11] Varghese O K, Kichambre P D, Gong D, Ong K G, Dickey E C and Grimes G A 2001 Sens. Actuators B Chem. 81 32
[12] Zhu L, Chang D W, Dai L and Hong Y 2007 Nano Lett. 7 3592
[13] Ibach H 2006 Physics of Surfaces and Interfaces (Berlin:Springer-Verlag) p. 30
[14] Lennard-Jones J E 1932 Trans. Faraday Soc. 28 333
[15] Dabrowski A 2001 Adv. Colloid Interface Sci. 93 135
[16] Peigney A, Laurent C, Flahaut E, Bacsa R R and Rousset A 2001 Carbon 39 507
[17] Kuznetsova A, Popova I, Yates J T, Bronikowski M J, Huffman C B, Liu J, Smalley R E, Hwu H H and Chen J G 2001 J. Am. Chem. Soc. 123 10699
[18] Eba Medjo R, Thiodjio Sendja B and Mane Mane J 2014 Mater. Sci. Appl. 5 95
[19] Jun Z and Chang L 2005 Xanes Study of Carbon Based Nanotubes 29 Conference proceedings
[20] Eba Medjo R 2015 Contamination in Manufacturing of Carbon Nanostructures
[21] Rosenberg R A, Love P J and Rehn V 1986 Phys. Rev. B 33 4034
[22] Durgun E, Dag S, Bagci V M K, et al. 2003 Phys. Rev. B 67 201401(R)
[23] Ding Y, Yang X B and Ni J 2006 Front. Phys. Chin. 1 317
[24] Dresselhaus M S, Williams K A and Eklund P C 1999 MRS Bull. 24 45
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[3] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[4] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[5] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[6] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[7] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[8] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[9] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[10] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[11] Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(6): 066801.
[12] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[13] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[14] Co-adsorption of O2 and H2O on α-uranium (110) surface: A density functional theory study
Xin Qu(瞿鑫), Ru-Song Li(李如松), Bin He(何彬), Fei Wang(王飞), Kai-Long Yuan(袁凯龙). Chin. Phys. B, 2018, 27(7): 076501.
[15] Influence of carrier gas H2 flow rate on quality of p-type GaN epilayer grown and annealed at lower temperatures
Shuang-Tao Liu(刘双韬), Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Feng Liang(梁锋), Ping Chen(陈平), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Yao Xing(邢瑶), Li-Yuan Peng(彭莉媛), Li-Qun Zhang(张立群), Wen-Jie Wang(王文杰), Mo Li(李沫). Chin. Phys. B, 2018, 27(12): 127803.
No Suggested Reading articles found!