Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087301    DOI: 10.1088/1674-1056/28/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy

Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东)
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  With the increasing interest in Cu2O-based devices for photovoltaic applications, the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2O3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu2O. A type-Ⅱ band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
Keywords:  Cu2O      ZnO      x-ray photoelectron spectroscopy      laser-molecular beam epitaxy  
Received:  25 November 2018      Revised:  06 May 2019      Published:  05 August 2019
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  77.55.hf (ZnO)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404302) and the Laser Fusion Research Center Funds for Young Talents, China (Grant No. RCFPD1-2017-9).
Corresponding Authors:  Wei-Dong Wu     E-mail:  wuweidongding@163.com

Cite this article: 

Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy 2019 Chin. Phys. B 28 087301

[1] Minami T, Nishi Y, Miyata T and Nomoto J 2011 Appl. Phys. Express 4 062301
[2] Wick R and Tilley S D 2015 J. Phys. Chem. C 119 26243
[3] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B: Condens. Matter 76 045209
[4] Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
[5] Minami T, Miyata T and Nishi Y 2014 Thin Solid Films 559 105
[6] Lofeski J J 1956 J. Appl. Phys. 27 777
[7] Minami T, Nishi Y and Miyata T 2016 Appl. Phys. Express 9 052301
[8] Sebastian S, Hellmann J C, Tilley S D, Graetzel M, Morasch J, Deuermeier J, Jaegermann W and Klein A 2016 ACS Appl. Mater. Interfaces 8 21824
[9] Wilson S S, Tolstova Y, Scanlon D O, Watson G W, Atwater H A and Bosco J P 2014 Energy Environ. Sci. 7 3606
[10] Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y 2014 Nano Res. 7 860
[11] Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X and Zhang Y 2015 Sci. Rep. 5 7882
[12] Xu C, Cao L, Su G, Liu W, Liu H, Yu Y and Qu X 2010 J. Hazard. Mater. 176 807
[13] Ievskaya Y, Hoye R L Z, Sadhanala A, Musselman K and MacManus-Driscoll J L 2015 Sol. Energy Mater. Sol. Cells 135 43
[14] Ishizuka S, Suzuki K, Okatomo Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K and Niki S 2004 Phys. Status Solidi 4 1067
[15] Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
[16] Tanaka H, Shimakawa T, Miyata T, Sato H and Minami T 2005 Appl. Surf. Sci. 244 568
[17] Minami T, Miyata T, Ihara K, Minamino Y and Tsukada S 2006 Thin Solid Films 494 47
[18] Dong C J, Yu W X, Xu M, Cao J J, Chen C, Yu W W and Wang Y D 2011 J. Appl. Phys. 110 073712
[19] Zhang P F, Liu X L, Zhang R Q, Fan H B, Yang A L, Wei H Y, Jin P, Yang S Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 012104
[20] Cho H, Douglas E A, Gila B P, Craciun V, Lambers E S, Ren F and Pearton S J 2012 Appl. Phys. Lett. 100 012105
[21] Fan H B, Sun G S, Yang S Y, Zhang P F, Zhang R Q, Wei H Y, Jiao C M, Liu X L, Chen Y H, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 192107
[22] Kraut E, Grant R, Waldrop J and Kowalczyk S 1980 Phys. Rev. Lett. 44 1620
[23] Alay J L, Hirose M 1997 J. Appl. Phys. 81 1606
[24] Perego M and Seguini G 2011 J. Appl. Phys. 110 053711
[25] Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fan X W 2008 Appl. Phys. Lett. 93 082108
[26] You J B, Zhang X W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701
[27] Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
[28] Lu Y, Le Breton J C, Turban P, Lépine B, Schieffer P and Jézéquel G 2006 Appl. Phys. Lett. 88 042108
[29] Li Y F, Yao B, Lu Y M, Li B H, Gai Y Q, Cong C X, Zhang Z Z, Zhao D X, Zhang J Y, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 92 192116
[30] Poulston S, Parlett P M, Stone P and Bowker M 1996 Surf. Interface Anal. 24 811
[31] Barman S R and Sarma D D 1992 J. Phys. Condens. Matter 4 7607
[32] Tobin J P, Hirschwald W and Cunningham J 1983 Appl. Surf. Sci. 16 441
[33] Ichimura M, Song Y 2011 Jpn. J. Appl. Phys. 50 051002
[34] Kramm B, Laufer A, Reppin D, Kronenberger A, Hering P, Polity A and Meyer B K 2012 Appl. Phys. Lett. 100 094102
[35] Yang M, Zhu L, Li Y, Cao L and Guo Y 2013 J. Alloys Compd. 578 143
[36] Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
[37] Chen S J, Lin L M, Liu J Y, Lv P W, Wu X P, Zheng W F, Qu Y and Lai F C 2015 J. Alloys Compd. 644 378
[38] Nishi Y, Miyata T and Minami T 2013 Thin Solid Films 528 72
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[5] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[6] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[7] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[8] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[9] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[10] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[11] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)†. Chin. Phys. B, 2020, 29(10): 104211.
[12] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[13] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[14] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[15] Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙). Chin. Phys. B, 2019, 28(8): 087302.
No Suggested Reading articles found!