CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy |
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) |
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract With the increasing interest in Cu2O-based devices for photovoltaic applications, the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2O3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu2O. A type-Ⅱ band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
|
Received: 25 November 2018
Revised: 06 May 2019
Published: 05 August 2019
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
77.55.hf
|
(ZnO)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404302) and the Laser Fusion Research Center Funds for Young Talents, China (Grant No. RCFPD1-2017-9). |
Corresponding Authors:
Wei-Dong Wu
E-mail: wuweidongding@163.com
|
Cite this article:
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy 2019 Chin. Phys. B 28 087301
|
[1] |
Minami T, Nishi Y, Miyata T and Nomoto J 2011 Appl. Phys. Express 4 062301
|
[2] |
Wick R and Tilley S D 2015 J. Phys. Chem. C 119 26243
|
[3] |
Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B: Condens. Matter 76 045209
|
[4] |
Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
|
[5] |
Minami T, Miyata T and Nishi Y 2014 Thin Solid Films 559 105
|
[6] |
Lofeski J J 1956 J. Appl. Phys. 27 777
|
[7] |
Minami T, Nishi Y and Miyata T 2016 Appl. Phys. Express 9 052301
|
[8] |
Sebastian S, Hellmann J C, Tilley S D, Graetzel M, Morasch J, Deuermeier J, Jaegermann W and Klein A 2016 ACS Appl. Mater. Interfaces 8 21824
|
[9] |
Wilson S S, Tolstova Y, Scanlon D O, Watson G W, Atwater H A and Bosco J P 2014 Energy Environ. Sci. 7 3606
|
[10] |
Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y 2014 Nano Res. 7 860
|
[11] |
Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X and Zhang Y 2015 Sci. Rep. 5 7882
|
[12] |
Xu C, Cao L, Su G, Liu W, Liu H, Yu Y and Qu X 2010 J. Hazard. Mater. 176 807
|
[13] |
Ievskaya Y, Hoye R L Z, Sadhanala A, Musselman K and MacManus-Driscoll J L 2015 Sol. Energy Mater. Sol. Cells 135 43
|
[14] |
Ishizuka S, Suzuki K, Okatomo Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K and Niki S 2004 Phys. Status Solidi 4 1067
|
[15] |
Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
|
[16] |
Tanaka H, Shimakawa T, Miyata T, Sato H and Minami T 2005 Appl. Surf. Sci. 244 568
|
[17] |
Minami T, Miyata T, Ihara K, Minamino Y and Tsukada S 2006 Thin Solid Films 494 47
|
[18] |
Dong C J, Yu W X, Xu M, Cao J J, Chen C, Yu W W and Wang Y D 2011 J. Appl. Phys. 110 073712
|
[19] |
Zhang P F, Liu X L, Zhang R Q, Fan H B, Yang A L, Wei H Y, Jin P, Yang S Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 012104
|
[20] |
Cho H, Douglas E A, Gila B P, Craciun V, Lambers E S, Ren F and Pearton S J 2012 Appl. Phys. Lett. 100 012105
|
[21] |
Fan H B, Sun G S, Yang S Y, Zhang P F, Zhang R Q, Wei H Y, Jiao C M, Liu X L, Chen Y H, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 192107
|
[22] |
Kraut E, Grant R, Waldrop J and Kowalczyk S 1980 Phys. Rev. Lett. 44 1620
|
[23] |
Alay J L, Hirose M 1997 J. Appl. Phys. 81 1606
|
[24] |
Perego M and Seguini G 2011 J. Appl. Phys. 110 053711
|
[25] |
Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fan X W 2008 Appl. Phys. Lett. 93 082108
|
[26] |
You J B, Zhang X W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701
|
[27] |
Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
|
[28] |
Lu Y, Le Breton J C, Turban P, Lépine B, Schieffer P and Jézéquel G 2006 Appl. Phys. Lett. 88 042108
|
[29] |
Li Y F, Yao B, Lu Y M, Li B H, Gai Y Q, Cong C X, Zhang Z Z, Zhao D X, Zhang J Y, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 92 192116
|
[30] |
Poulston S, Parlett P M, Stone P and Bowker M 1996 Surf. Interface Anal. 24 811
|
[31] |
Barman S R and Sarma D D 1992 J. Phys. Condens. Matter 4 7607
|
[32] |
Tobin J P, Hirschwald W and Cunningham J 1983 Appl. Surf. Sci. 16 441
|
[33] |
Ichimura M, Song Y 2011 Jpn. J. Appl. Phys. 50 051002
|
[34] |
Kramm B, Laufer A, Reppin D, Kronenberger A, Hering P, Polity A and Meyer B K 2012 Appl. Phys. Lett. 100 094102
|
[35] |
Yang M, Zhu L, Li Y, Cao L and Guo Y 2013 J. Alloys Compd. 578 143
|
[36] |
Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
|
[37] |
Chen S J, Lin L M, Liu J Y, Lv P W, Wu X P, Zheng W F, Qu Y and Lai F C 2015 J. Alloys Compd. 644 378
|
[38] |
Nishi Y, Miyata T and Minami T 2013 Thin Solid Films 528 72
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|