Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080305    DOI: 10.1088/1674-1056/28/8/080305
GENERAL Prev   Next  

Tunable coupling between Xmon qubit and coplanar waveguide resonator

He-Kang Li(李贺康)1,3, Ke-Min Li(李科敏)2, Hang Dong(董航)2, Qiu-Jiang Guo(郭秋江)2, Wu-Xin Liu(刘武新)2, Zhan Wang(王战)1,3, Hao-Hua Wang(王浩华)2, Dong-Ning Zheng(郑东宁)1,3,4
1 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing. Here, we design and characterize a tunable coupling element based on Josephson junction, which can be adapted to an all-to-all connected circuit architecture where multiple Xmon qubits couple to a common coplanar waveguide resonator. The coupling strength is experimentally verified to be adjustable from 0 MHz to about 40 MHz, and the qubit lifetime can still be up to 12 μs in the presence of the coupling element.

Keywords:  superconducting Xmon qubit      qubit-resonator coupling      tunable coupling  
Received:  10 April 2019      Revised:  22 May 2019      Published:  05 August 2019
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  85.25.Cp (Josephson devices)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304300 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11725419 and 11434008), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).

Corresponding Authors:  Hao-Hua Wang, Dong-Ning Zheng     E-mail:  hhwang@zju.edu.cn;dzheng@iphy.ac.cn

Cite this article: 

He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁) Tunable coupling between Xmon qubit and coplanar waveguide resonator 2019 Chin. Phys. B 28 080305

[1] You J Q and Nori F 2007 Physics Today 58 42
[2] Nielsen M A and Chuang I 2011 Quantum Computation Quantum Information, 10th edn. (Cambridge: Cambridge University Press) p. 47
[3] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[4] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[5] Chiorescu I, Nakamura Y, Harmans C and Mooij J E 2003 Science 299 1869
[6] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[7] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[8] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Clel, A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[9] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
[10] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W and Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
[11] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[12] Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66
[13] Song C, Xu K, Liu W, Yang C, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[14] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507
[15] Chen Y, Neill C, Roushan P, et al. 2014 Phys. Rev. Lett. 113 220502
[16] Geller M R, Donate E, Chen Y, Neill C, Roushan P and Martinis J M 2014 arXiv: 1405.1915[cond-mat,physics:quant-ph]
[17] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[18] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195
[19] Dolan G J 1977 Appl. Phys. Lett. 31 337
[20] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus J, O'Malley P, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T, Clel A and Martinis J 2014 Appl. Phys. Lett. 104 052602
[1] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[2] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[3] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[4] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[5] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[6] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[7] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[8] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[9] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[10] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[11] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
[12] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[13] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[14] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[15] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
No Suggested Reading articles found!