Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080201    DOI: 10.1088/1674-1056/28/8/080201
GENERAL   Next  

The evolution of cooperation in public good game with deposit

Xian-Jia Wang(王先甲)1,2, Wen-Man Chen(陈文嫚)1
1 Economics and Management School, Wuhan University, Wuhan 430070, China;
2 Institute of System and Engineer, Wuhan University, Wuhan 430070, China
Abstract  

The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences. We introduce a new mechanism, deposit mechanism, into theoretical model to explore how this mechanism promotes cooperation in a well-mixed population. Firstly, we extend the common binary-strategy combination of cooperation and defection in public good game by adding a third strategy, namely, deposit cooperation. The players with deposit cooperation strategy pay a deposit in advance to obtain the benefits of public good at a lower contributions compared with the players with cooperation strategy, when the provision of public good is successful. Then, we explore the evolution of cooperation in the public good game with deposit by means of the replicator dynamics. Theoretical computations and stimulations show that the deposit mechanism can promote cooperation in a well-mixed population, and the numbers of equilibrium point are determined by variables of public good game. On the one hand, when the coexistence of cooperators and defectors is the stable equilibrium point in the evolutionary system, increasing the threshold of public good and adopting the weak altruism way for share benefits can enhance the level of cooperation in the population. On the other hand, if the coexistence of deposit cooperators and defectors is the stable equilibrium point, it is effective to promote the deposit cooperation by lowering the values of discount and deposit, and raising the threshold of public good.

Keywords:  evolutionary game theory      cooperation      deposit      weak altruism      discount rate  
Received:  05 May 2019      Revised:  06 June 2019      Published:  05 August 2019
PACS:  02.50.Le (Decision theory and game theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 71871171, 71871173, and 71701076).

Corresponding Authors:  Wen-Man Chen     E-mail:  wenmanchen@whu.edu.cn

Cite this article: 

Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚) The evolution of cooperation in public good game with deposit 2019 Chin. Phys. B 28 080201

[40] Chen C Q, Dai Q L, Han W C and Yang J Z 2017 Chin. Phys. Lett. 34 028901
[1] Christie M R, Mcnickle G G, French R A and Michael S B 2018 Proc. Natl. Acad. Sci. USA 115 4441
[41] Tao S Y, Cui M Z, Dai Q L and Yang J Z 2014 Chin. Phys. Lett. 31 110201
[2] Colman A M 2006 Nature 440 744
[42] Jianlei Z, Chunyan Z and Ming C 2015 Sci. Rep. 5 9098
[3] Martinezvaquero L A, Han T A, Pereira L M and Lenaerts T 2017 Sci. Rep. 7 2478
[43] Fletcher J A and Zwick M 2007 J. Theor. Biol. 245 26
[4] Axelrod R, Hamilton W D 1981 Science 211 1390
[44] Li Y and Ye H 2018 Appl. Math. Comput. 320 621
[5] Du P, Xu C and Zhang W 2015 Chin. Phys. Lett. 32 058901
[45] Shimura H and Nakamaru M 2018 J. Theor. Biol. 451 46
[6] Wei L Y, Cui Y F and Li D Y 2018 Acta Phys. Sin. 67 190201 (in Chinese)
[46] Connelly B D, Dickinson K J, Hammarlund S P and Kerr B 2016 Evol. Ecol. 30 267
[7] Martinezvaquero L L A, Han T A, Pereira L M and Lenaerts T 2019 Biol. Lett. 15 0143
[47] Huck S, Leutgeb J and Oprea R 2017 Nat. Commun. 8 15147
[8] Ulrich F 2019 Biol. Lett. 15 0143
[48] Cassese D 2018 Appl. Netw. Sci. 3 29
[9] Li Y M, Du W B, Yang P, Wu T H, Wu D P and Perc M 2019 IEEE Internet Things J. 6 1866
[49] Zhang W, Li Y S and Xu C 2015 Chin. Phys. Lett. 32 118901
[10] Barker J L, Bronstein J L, Friesen M L,Jones E I, Reeve H K, Zink A G and Frederickson M E 1971 Q. Rev. Biol. 46 35
[50] Lopez G R and Levinton J S 1987 Q. Rev. Biol. 62 235
[11] Trivers R L 1971 Q. Rev. Biol. 46 35
[51] Fletcher J A and Doebeli M 2009 Proc. R. Soc. Lond. Ser. B-Biol. Sci. 276 13
[12] Righi S and Takacs K 2018 Sci. Rep. 8 11149
[52] Huang Z G, Wu Z X, Wu A C, Yang L and Wang Y H 2008 Europhys. Lett. 84 50008
[13] M T, Jg F and C R 2016 Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 371 20150472
[53] Novak S, Chatterjee K and Nowak M A 2013 J. Theor. Biol. 334 26
[14] Manfred M, Dirk S and Krambeck H J 2002 Nature 415 424
[54] Ohtsuki H and Nowak M A 2006 J. Theor. Biol. 243 86
[15] Christoph H 2010 J. Theor. Biol. 267 22
[16] Santos F P, Santos F C and Pacheco J M 2018 Nature 555 242
[17] Sasaki T and Uchida S 2014 Biol. Lett. 10 20130903
[18] Sasaki T and Unemi T 2011 J. Theor. Biol. 287 109
[19] Forsyth P A I and Hauert C 2011 J. Math. Biol. 63 109
[20] Andreoni J, Harbaugh W and Vesterlund L 2003 Am. Econ. Rev. 93 893
[21] Boyd R and Richerson P J 1992 Ethol. Sociobiol. 13 171
[22] Li X, Jusup M, Wang Z, Li H, Lei S, Boris P, Eugene S, Shlomo H and Stefano B 2018 Proc. Natl. Acad. Sci. USA 115 30
[23] Yang H X and Chen X 2018 Appl. Math. Comput. 316 460
[24] Boyd R, Gintis H and Bowles S 2010 Science 328 617
[25] James H F 2005 Proc. Natl. Acad. Sci. USA 102 7047
[26] Ohdaira T 2017 Chaos, Solitons and Fractals 95 77
[27] Geng Y, Shen C, Hu K and Shi L 2018 Physica A 503 540
[28] Yu T, Chen S H and Li H 2016 J. Econ. Interact. Coord. 11 313
[29] Rand D G, Nowak M A, Fowler J H and Christakis N A 2014 Proc. Natl. Acad. Sci. USA 111 17093
[30] Nowak M A and May R M 1992 Nature 359 826
[31] Wang X, Lv S and Quan J 2017 Physica A 482 286
[32] Wang X, Zhang L, Du X and Sun Y 2017 Nat. Comput. 16 99
[33] Xie F, Shi J and Lin J 2017 PLoS One 12 e182524
[34] Melamed D and Simpson B 2016 Soc. Networks 45 32
[35] Huang Z G, Wang S J, Xu X J and Wang Y H 2008 Europhys. Lett. 81 28001
[36] Zhao L, Ye X J, Huang Z G, Sun J T, Yang L, Do Y and Wang Y H 2010 J. Stat. Mech.-Theory Exp. 2010 P08009
[37] Perc M and Szolnoki A 2008 Phys. Rev. E 77 011904
[38] Du W B, Cao X B, Hu M B and Wang W X 2009 Europhys. Lett. 87 60004
[39] Li Y M, Zhang J and Perc M 2017 Appl. Math. Comput. 320 437
[40] Chen C Q, Dai Q L, Han W C and Yang J Z 2017 Chin. Phys. Lett. 34 028901
[41] Tao S Y, Cui M Z, Dai Q L and Yang J Z 2014 Chin. Phys. Lett. 31 110201
[42] Jianlei Z, Chunyan Z and Ming C 2015 Sci. Rep. 5 9098
[43] Fletcher J A and Zwick M 2007 J. Theor. Biol. 245 26
[44] Li Y and Ye H 2018 Appl. Math. Comput. 320 621
[45] Shimura H and Nakamaru M 2018 J. Theor. Biol. 451 46
[46] Connelly B D, Dickinson K J, Hammarlund S P and Kerr B 2016 Evol. Ecol. 30 267
[47] Huck S, Leutgeb J and Oprea R 2017 Nat. Commun. 8 15147
[48] Cassese D 2018 Appl. Netw. Sci. 3 29
[49] Zhang W, Li Y S and Xu C 2015 Chin. Phys. Lett. 32 118901
[50] Lopez G R and Levinton J S 1987 Q. Rev. Biol. 62 235
[51] Fletcher J A and Doebeli M 2009 Proc. R. Soc. Lond. Ser. B-Biol. Sci. 276 13
[52] Huang Z G, Wu Z X, Wu A C, Yang L and Wang Y H 2008 Europhys. Lett. 84 50008
[53] Novak S, Chatterjee K and Nowak M A 2013 J. Theor. Biol. 334 26
[54] Ohtsuki H and Nowak M A 2006 J. Theor. Biol. 243 86
[1] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳)‡. Chin. Phys. B, 2021, 30(1): 016802.
[2] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[3] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[4] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[5] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[6] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[7] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[8] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[9] Optimization of laser focused atomic deposition by channeling
Jie Chen(陈杰), Jie Liu(刘杰), Li Zhu(朱立), Xiao Deng(邓晓), Xinbin Cheng(陈鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2020, 29(2): 020601.
[10] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[11] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), Qing He(何清). Chin. Phys. B, 2020, 29(11): 117701.
[12] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐), Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[13] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(10): 107102.
[14] Evaporation of saline colloidal droplet and deposition pattern
Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎). Chin. Phys. B, 2020, 29(1): 014701.
[15] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
No Suggested Reading articles found!