Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 068504    DOI: 10.1088/1674-1056/28/6/068504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension

Zheng-Xin Wen(温正欣)1,2, Feng Zhang(张峰)1,2,3, Zhan-Wei Shen(申占伟)1, Jun Chen(陈俊)1,2, Ya-Wei He(何亚伟)1,2, Guo-Guo Yan(闫果果)1, Xing-Fang Liu(刘兴昉)1, Wan-Shun Zhao(赵万顺)1, Lei Wang(王雷)1, Guo-Sheng Sun(孙国胜)1,2, Yi-Ping Zeng(曾一平)1,2
1 Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  

10-kV 4H-SiC p-channel insulated gate bipolar transistors (IGBTs) are designed, fabricated, and characterized in this paper. The IGBTs have an active area of 2.25 mm2 with a die size of 3 mm×3 mm. A step space modulated junction termination extension (SSM-JTE) structure is introduced and fabricated to improve the blocking performance of the IGBTs. The SiC p-channel IGBTs with SSM-JTE termination exhibit a leakage current of only 50 nA at -10 kV. To improve the on-state characteristics of SiC IGBTs, the hexagonal cell (H-cell) structure is designed and compared with the conventional interdigital cell (I-cell) structure. At an on-state current of 50 A/cm2, the voltage drops of I-cell IGBT and H-cell IGBT are 10.1 V and 8.3 V respectively. Meanwhile, on the assumption that the package power density is 300 W/cm2, the maximum permissible current densities of the I-cell IGBT and H-cell IGBT are determined to be 34.2 A/cm2 and 38.9 A/cm2 with forward voltage drops of 8.8 V and 7.8 V, respectively. The differential specific on-resistance of I-cell structure and H-cell structure IGBT are 72.36 mΩ·cm2 and 56.92 mΩ·cm2, respectively. These results demonstrate that H-cell structure silicon carbide IGBT with SSM-JTE is a promising candidate for high power applications.

Keywords:  silicon carbide      power device      insulated gate bipolar transistors (IGBTs)      high voltage  
Received:  03 March 2019      Revised:  04 April 2019      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.Pq (Bipolar transistors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the Science Challenge Project, China (Grant No. TZ2018003), the National Natural Science Foundation of China (Grant Nos. 61474113, 61574140, and 61804149), the Beijing NOVA Program, China (Grant Nos. 2016071 and Z181100006218121), the Beijing Municipal Science and Technology Commission Project, China (Grant No. Z161100002116018), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012098).

Corresponding Authors:  Feng Zhang     E-mail:  fzhang@semi.ac.cn

Cite this article: 

Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平) Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension 2019 Chin. Phys. B 28 068504

[1] Kimoto T and Cooper J A 2014 Fundamentals of silicon carbide technology: growth, characterization, devices and applications (John Wiley & Sons)
[2] Song Q W, Tang X Y, Yuan H, Wang Y H, Zhang Y M, Guo H, Jia R X, Lv H L, Zhang Y M and Zhang Y M 2016 Chin. Phys. B 25 047102
[3] Song Q W, Tang X Y, He Y J, Tang G N, Wang Y H, Zhang Y M, Guo H, Jia R X, Lv H L and Zhang Y M 2016 Chin. Phys. B 25 037306
[4] Lin D, Guo-Sheng S, Jun Y, Liu Z, Xing-Fang L, Feng Z, Guo-Guo Y, Xi-Guang L, Zhan-Guo W and Fei Y 2013 Chin. Phys. Lett. 30 096105
[5] Wang J, Zhao T, Li J, Huang A Q, Callanan R, Husna F and Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798
[6] Das M K, Zhang Q J, Callanan R, Capell C, Clayton J, Donofrio M, Haney S K, Husna F, Jonas C and Richmond J 2009 Materials Science Forum 600-603 1183
[7] Van Brunt E, Cheng L, O'Loughlin M J, Richmond J, Pala V, Palmour J W, Tipton C W and Scozzie C 2015 Materials Science Forum 821-823 847
[8] Brunt E, Cheng L, O'Loughlin M, Capell C, Jonas C, Lam K, Richmond J, Pala V, Ryu S and Allen S 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 15-19 June, 2014, Waikoloa, HI, USA, p. 358
[9] Brunt E, Cheng L, O'Loughlin M, Capell C, Jonas C, Lam K, Richmond J, Pala V, Ryu S and Allen S 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD) pp. 358-361
[10] Sui Y, Wang X and Cooper J 2007 IEEE Electron Dev. Lett. 28 728
[11] Zhang Q, Das M, Sumakeris J, Callanan R and Agarwal A 2008 IEEE Electron Dev. Lett. 29 1027
[12] Zhang Q, Wang J, Jonas C, Callanan R, Sumakeris J J, Ryu S H, Das M, Agarwal A, Palmour J and Huang A Q 2008 IEEE Trans. Electron. Dev. 55 1912
[13] Katakami S, Fujisawa H, Takenaka K, Ishimori H, Takasu S, Okamoto M, Arai M, Yonezawa Y and Fukuda K 2013 Mater. Sci. Forum 740-742 958
[14] Wang Y, Tang K, Khan T, Balasubramanian M K, Naik H, Wang W and Chow T P 2008 IEEE Trans. Electron. Dev. 55 2046
[15] Vellvehí M, Flores D, Jordá X, Hidalgo S, Rebollo J, Coulbeck L and Waind P 2004 Microelectron. J. 35 269
[16] Das M K, Haney S K, Richmond J, Olmedo A, Zhang Q J and Ring Z 2012 Mater. Sci. Forum 717-720 1073
[17] Feng G, Suda J and Kimoto T 2012 IEEE Trans. Electron. Dev. 59 414
[18] Zhou C N, Wang Y, Yue R F, Dai G and Li J T 2017 IEEE Trans. Electron. Dev. 64 1193
[19] Pan J, Cooper J and Melloch M 1995 Electron. Lett. 31 1200
[20] Capano M A, Cooper Jr J, Melloch M, Saxler A and Mitchel W 2000 J. Appl. Phys. 87 8773
[21] Shen Z W, Zhang F, Dimitrijev S, Han J S, Yan G G, Wen Z X, Zhao W S, Wang L, Liu X F and Sun G S 2017 Chin. Phys. B 26 107101
[22] Sun Q J, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Li C Z, Zhao Y L and Zhang Y M 2017 Chin. Phys. B 26 127701
[23] Konishi R, Yasukochi R, Nakatsuka O, Koide Y, Moriyama M and Murakami M 2003 Mater. Sci. Eng. B 98 286
[24] Pesic I, Navarro D, Miyake M and Miura-Mattausch M 2014 Solid-State Electron. 101 126
[25] Cooper J, Tamaki T, Walden G, Sui Y, Wang S and Wang X 2009 IEEE International Electron Devices Meeting (IEDM), 7-9 December, 2009, Baltimore, MD, USA, p. 1
[26] Okamoto D, Sometani M, Harada S, Kosugi R, Yonezawa Y and Yano H 2014 IEEE Electron Dev. Lett. 35 1176
[27] Kimoto T, Kawahara K, Zippelius B, Saito E and Suda J 2016 Superlattices Microstructures 99 151
[28] Wen Z, Zhang F, Shen Z, Tian L, Yan G, Liu X, Wang L, Zhao W, Sun G and Zeng Y 2017 IEEE Electron Dev. Lett. 38 941
[1] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[4] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[5] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[6] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[7] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[8] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[9] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[10] Shortening turn-on delay of SiC light triggered thyristor by 7-shaped thin n-base doping profile
Xi Wang(王曦), Hong-Bin Pu(蒲红斌), Qing Liu(刘青), Li-Qi An(安丽琪). Chin. Phys. B, 2018, 27(10): 108502.
[11] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[12] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[13] Injection modulation of p+–n emitter junction in 4H–SiC light triggered thyristor by double-deck thin n-base
Xi Wang(王曦), Hongbin Pu(蒲红斌), Qing Liu(刘青), Chunlan Chen(陈春兰), Zhiming Chen(陈治明). Chin. Phys. B, 2017, 26(10): 108505.
[14] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[15] Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
Wang Wei-Jie (王卫杰), Zhao Zhen-Guo (赵振国), Zhao Yi (赵艺), Zhou Hai-Jing (周海京), Fu Ce-Ji (符策基). Chin. Phys. B, 2015, 24(9): 094213.
No Suggested Reading articles found!