Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066801    DOI: 10.1088/1674-1056/28/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy

Jing Qi(戚竞)1, Yi-Xuan Gao(高艺璇)1, Li Huang(黄立)1, Xiao Lin(林晓)1, Jia-Jia Dong(董佳家)2, Shi-Xuan Du(杜世萱)1,3, Hong-Jun Gao(高鸿钧)1,3
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China
Abstract  

The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy (STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu (111) by non-contact atomic force microscopy (nc-AFM). Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C-H and C-C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory (DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C-Cu bond(s) with the underlying copper atoms, and hence stand on the substrate. By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu (111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.

Keywords:  phenylacetylene      adsorption configuration      scanning probe microscopy      density functional theory  
Received:  11 March 2019      Revised:  04 April 2019      Accepted manuscript online: 
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  07.79.-v (Scanning probe microscopes and components)  
  31.15.E (Density-functional theory)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61474141, and 21661132006), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604373), the Outstanding Youth Science Foundation, China (Grant No. 61622116), and the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant Nos. XDB28000000 and XDB30000000).

Corresponding Authors:  Li Huang, Shi-Xuan Du     E-mail:  lhuang@iphy.ac.cn;sxdu@iphy.ac.cn

Cite this article: 

Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy 2019 Chin. Phys. B 28 066801

[1] Giancarlo L C, Fang H B, Rubin S M, Bront A A and Flynn G W 1998 J. Phys. Chem. B 102 10255
[2] Kirakosian A, Comstock M J, Cho J and Crommie M F 2005 Phys. Rev. B 71 113409
[3] Ramoino L, von Arx M, Schintke S, Baratoff A, Guntherodt H J and Jung T A 2006 Chem. Phys. Lett. 417 22
[4] Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H, Chi L F, Fuchs H, Pennycook S J and Pantelides S T 2006 Phys. Rev. Lett. 97 156105
[5] Zaera F 2002 Surf. Sci. 500 947
[6] Somorjai G A and Yang M C 2003 Top. Catal 24 61
[7] Deng X Y, Min B K, Guloy A and Friend C M 2005 J. Am. Chem. Soc. 127 9267
[8] Velic D, Hotzel A, Wolf M and Ertl G 1998 J. Chem. Phys. 109 9155
[9] Schroeder P G, France C B, Park J B and Parkinson B A 2002 J. Appl. Phys. 91 3010
[10] Huang W X and White J M 2004 J. Phys. Chem. B 108 5060
[11] Shi D, Ji W, Lin X, He X, Lian J, Gao L, Cai J, Lin H, Du S, Lin F, Seidel C, Chi L, Hofer W, Fuchs H and Gao H J 2006 Phys. Rev. Lett. 96 226101
[12] Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S and Eklund P C 2006 Nano Lett. 6 1141
[13] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[14] Gao L, Liu Q, Zhang Y Y, Jiang N, Zhang H G, Cheng Z H, Qiu W F, Du S X, Liu Y Q, Hofer W A and Gao H J 2008 Phys. Rev. Lett. 101 197209
[15] Zhang H G, Mao J H, Liu Q, Jiang N, Zhou H T, Guo H M, Shi D X and Gao H J 2010 Chin. Phys. B 19 018105
[16] Esat T, Friedrich N, Tautz F S and Temirov R 2018 Nature 558 573
[17] Schliwa M and Woehlke G 2003 Nature 422 759
[18] Hu Y B, Zhu Y, Gao H J and Guo H 2005 Phys. Rev. Lett. 95 156803
[19] Stöhr J 1992 NEXAFS Spectroscopy (Berlin, Heidelberg: Springer-Verlag)
[20] Hofmann S 2013 Auger- and X-Ray Photoelectron Spectroscopy in Materials Science (Berlin, Heidelberg: Springer-Verlag)
[21] Gimzewski J K and Joachim C 1999 Science 283 1683
[22] Larson A M, van Baren J, Kintigh J, Wang J, Tang J M, Zahl P, Miller G P and Pohl K 2018 J. Phys. Chem. C 122 11938
[23] Vernisse L, Guillermet O, Gourdon A and Coratger R 2018 Surf. Sci. 669 87
[24] Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondracek M, Jelinek P, Wang E G and Jiang Y 2018 Nat. Commun. 9 122
[25] Moreno C, Stetsovych O, Shimizu T K and Custance O 2015 Nano Lett. 15 2257
[26] Albrecht F, Pavlicek N, Herranz-Lancho C, Ruben M and Repp J 2015 J. Am. Chem. Soc. 137 7424
[27] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A and Meyer G 2012 Science 337 1326
[28] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[29] Pavlicek N, Fleury B, Neu M, Niedenfuhr J, Herranz-Lancho C, Ruben M and Repp J 2012 Phys. Rev. Lett. 108 086101
[30] Zhang J, Chen P C, Yuan B K, Ji W, Cheng Z H and Qiu X H 2013 Science 342 611
[31] Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W M and Jaspars M 2010 Nat. Chem. 2 821
[32] Giessibl F J 2003 Rev. Mod. Phys. 75 949
[33] Iucci G, Carravetta V, Altamura P, Russo M V, Paolucci G, Goldoni A and Polzonetti G 2004 Chem. Phys. 302 43
[34] Sohn Y, Wei W and White J M 2007 J. Phys. Chem. C 111 5101
[35] Li Q, Han C B, Fuentes-Cabrera M, Terrones H, Sumpter B G, Lu W C, Bernholc J, Yi J Y, Gai Z, Baddorf A P, Maksymovych P and Pan M H 2012 ACS Nano 6 9267
[36] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 085421
[41] Shiotari A, Odani T and Sugimoto Y 2018 Phys. Rev. Lett. 121 116101
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[3] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[4] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[5] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[10] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[11] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[12] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[13] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[14] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!