Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060305    DOI: 10.1088/1674-1056/28/6/060305
GENERAL Prev   Next  

Simulation and measurement of millimeter-wave radiation from Josephson junction array

Xin Zhang(张鑫)1, Sheng-Hui Zhao(赵生辉)1, Li-Tian Wang(王荔田)1, Jian Xing(邢建)1, Sheng-Fang Zhang(张胜芳)1, Xue-Lian Liang(梁雪连)1, Ze He(何泽)1, Pei Wang(王培)2, Xin-Jie Zhao(赵新杰)1,3, Ming He(何明)1,4, Lu Ji(季鲁)1,3
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
2 Beijing Institute of Radio Measurement, Beijing 100854, China;
3 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
4 Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
Abstract  We report the circuit simulations and experiments of millimeter-wave radiation from a high temperature superconducting (HTS) bicrystal Josephson junction (BJJ) array. To study the effects of junction characteristic parameters on radiation properties, new radiation circuit models are proposed in this paper. The series resistively and capacitively shunted junction (RCSJ) models are packaged into a Josephson junction array (JJA) model in the simulation. The current-voltage characteristics (IVCs) curve and radiation peaks are simulated and analyzed by circuit models, which are also observed from the experiment at liquid nitrogen temperature. The experimental radiation linewidth and power are in good agreement with simulated results. The presented circuit models clearly demonstrate that the inconsistency of the JJA will cause a broad linewidth and a low detected power. The junction radiation properties are also investigated at the optimal situation by circuit simulation. The results further confirm that the consistent JJA characteristic parameters can successfully narrow the radiation linewidth and increase the power of junction radiation.
Keywords:  high temperature superconducting (HTS) Josephson junction array      radiation      circuit model      simulation  
Received:  16 January 2019      Revised:  01 April 2019      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  74.81.Fa (Josephson junction arrays and wire networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51002081), the Fundamental Research Funds for the Central Universities, China, the China Manned Space Advance Research Program, China (Grant No. 030201), and the Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant No. 15JCQNJC01300).
Corresponding Authors:  Lu Ji     E-mail:  luji@nankai.edu.cn

Cite this article: 

Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁) Simulation and measurement of millimeter-wave radiation from Josephson junction array 2019 Chin. Phys. B 28 060305

[1] Minami H, Watanabe C, Kashiwagi T, Yamamoto T, Kadowaki K and Klemm R A 2016 J. Phys.: Condens. Matter 28 025701
[2] Sun H, Wiel, R, Xu Z, et al. 2018 Phys. Rev. Appl. 10 024041
[3] Darula M, Doderer T and Beuven S 1999 Supercond. Sci. Technol. 12 R1
[4] Kashiwagi T, Kubo H, Sakamoto K, Yuasa T, Tanabe Y, Watanabe C, Tanaka T, Komori Y, Ota R, Kuwano G, Nakamura K, Katsuragawa T, Tsujimoto M, Yamamoto T, Yoshizaki R, Minami H, Kadowaki K and Klemm R A 2017 Supercond. Sci. Technol. 30 074008
[5] Han S, Ji S, Kang I, Kim S C and You C 2019 Opt. Commun. 430 83
[6] Adela B B, van Beurden M C, Van Zeijl P and Smolders A B 2018 IEEE Trans. Antennas Propag. 66 5214
[7] Daniel O, Patrick K, Julian A, Jannis G, Martin V, Kristina Z and Ole G 2018 Frequenz 72 151
[8] Du J, Weily A R, Gao X, Zhang T, Foley C P and Guo Y J 2017 Supercond. Sci. Technol. 30 024002
[9] Pegrum C, Zhang T, Du J and Guo Y J 2016 IEEE Trans. Appl. Supercond. 26 1
[10] Shukrinov Y M, Medvedeva S Y, Botha A E, Kolahchi M R and Irie A 2013 Phys. Rev. B 88 214515
[11] Rudau F, Wiel, R, Langer J, Zhou X J, Ji M, Kinev N, Hao L Y, Huang Y, Li J, Wu P H, Hatano T, Koshelets V P, Wang H B, Koelle D and Kleiner R 2016 Phys. Rev. Appl. 5 044017
[12] Richards P L, Auracher F and Van Duzer T 1973 Proc. IEEE 61 36
[13] Zhang T, Pegrum C, Du J and Guo Y J J 2017 Supercond. Sci. Technol. 30 015008
[14] Wang P, Wang Z, Fan B, Xie W, Liu W, Zhao X J, Zhang X, Ji L, He M, Fang L and Yan S L 2012 Physica C: Supercond. 483 97
[15] Wang Z, Zhao X J, Yue H W, Song F B, He M, You F, Yan S L, Klushin A M and Xie Q L 2010 Supercond. Sci. Technol. 23 065013
[16] Liu X, Hu L, Xie W, Wang P, Ma L J, Zhao X J, He M, Zhang X and Ji L 2015 Physica C 511 10
[17] Li M Y, Yuan J, Kinev N, Li J, Gross B, Guenon S, Ishii A, Hirata K, Hatano T, Koelle D, Kleiner R, Koshelets V P, Wang H B and Wu P H 2012 Phys. Rev. B 86 060505
[18] Jain A K, Likharev K K, Lukens J E and E S J 1984 Phys. Rep. 109 309
[19] Kunkel G, Ono R H and Klushin A M 1996 Supercond. Sci. Technol. 9 A1
[1] Gyrokinetic simulation of low-n Alfvénic modesin tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪), and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[3] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[4] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[7] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[14] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[15] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
No Suggested Reading articles found!