Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057504    DOI: 10.1088/1674-1056/28/5/057504
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Computational study of inverse ferrite spinels

A EL Maazouzi1, R Masrour1, A Jabar1, M Hamedoun2
1 Laboratory of Materials, Processes, Environment and Quality, Cadi Ayyad University, National School of Applied Sciences, Sidi Bouzid, Safi 63 46000, Morocco;
2 Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco
Abstract  

The magnetic properties of inverse ferrite (Fe3+) [Fe3+Co2+]O42-,(Fe3+) [Fe3+Cu2+]O42-,(Fe3+) [Fe3+Fe2+]O42-, and (Fe3+) [Fe3+Ni2+]O42- spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system. Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3D-Ising model.

Keywords:  inverse ferrites spinels      Monte Carlo simulation      critical and Curie Weiss temperatures      magnetic hysteresis cycles      critical exponents  
Received:  06 February 2019      Revised:  05 March 2019      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  75.40.Mg (Numerical simulation studies)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Corresponding Authors:  A EL Maazouzi     E-mail:  rachidmasrour@hotmail.com

Cite this article: 

A EL Maazouzi, R Masrour, A Jabar, M Hamedoun Computational study of inverse ferrite spinels 2019 Chin. Phys. B 28 057504

[1] Tamayo H S, García K E and Barrero C A 2019 J. Magn. Magn. Mater. 471 242
[2] Ramos A V, Guittet M J, Moussy J B, Mattana R, Deranlot C, Petroff F and Gatel C 2007 Appl. Phys. Lett. 91 122107
[3] Zheng H, Wang J, Lofl, S E, Ma Z, Ardabili L M, Zhao T, Riba L S, Shinde S R, Ogale S B, Bai F, Viehl, D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
[4] Wu Y, Wan J G, Liu J M and Wang G 2010 Appl. Phys. Lett. 96 152902
[5] Kodama R H, Berkowitz A E, McNiff Jr E J and Foner S 1997 J. Appl. Phys. 81 5552
[6] Wang J, Luo J, Fan Q, Suzuki M, Suzuki I S, Engelhard M H, Lin Y, Kim N, Wang J Q and Zhong C J 2005 J. Phys. Chem. B 109 21593
[7] Casu A, Casula M F, Corrias A, Falqui A, Loche D and Marras S 2007 J. Phys. Chem. C 111 916
[8] Murillo N, Ochoteco E, Alesanco Y, Pomposo J A, Rodriguez J, Gonzalez J, Val J J D, Gonzalez J M, Brtel M R and Lopez A R A 2004 Nanotechnology 15 S322
[9] Zhang Z and Satpathy S 1991 Phys. Rev. B 44 13319
[10] Yanase A and Siratori K 1984 J. Phys. Soc. Jpn. 53 312
[11] Joshi S, Kumar M, Pandey H, Singh M and Pal P 2018 J. Alloys Compnds. 768 287
[12] Joshi S, Kumar M, Chhoker S, Srivastava G, Jewariya M and Singh V N 2014 J. Mol. Struct 1076 55
[13] Ahmed Y M Z, Hessien M M, Rashad M M and Ibrahim I A 2009 J. Magn. Magn. Mater. 321 181
[14] Ramankutty C G and Sugunan S 2001 Appl. Catal. A 218 39
[15] Reddy C V G, Manorama S V and Rao V 1999 J. Sens. Actuators B: Chemical. 55 90
[16] Yuan J J, Zhao Q, Xu Y S, Liu Z G, Du X B and Wen G H 2009 J. Magn. Magn. Mater. 321 2795
[17] Wang J, Li J, Li X, Bao X and Gao X 2018 J. Magn. Magn. Mater. 462 53
[18] Huang Y L, Fan W B, Hou Y H, Guo K X, Ouyang Y F and Liu Z W 2017 J. Magn. Magn. Mater. 429 263
[19] Mirzaee Sh, shayesteh S F, Mahdavifar S and Hekmatara S H 2015 J. Magn. Magn. Mater. 393 1
[20] Masrour R, Hlil E K, Hamedoun M, Benyoussef A, Mounkachi O and El Moussaoui H 2015 J. Magn. Magn. Mater. 378 37
[21] Salmi S, Masrour R, El Grini A, Bouslykhane K, Hourmatallah A, Benzakour N and Hamedoun M 2018 J. Cluster Sci. 29 493
[22] Masrour R, Hamedoun M and Benyoussef A 2011 Chem. Phys. Lett. 513 280
[23] Zhang X L, Liu Z F and Liu W M 2013 Sci. Rep. 3 2908
[24] Ji A C, Xie X C and Liu W M 2007 Phys. Rev. Lett. 99 183602
[25] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[26] Srivastava C M, Srinivasan G and Nanadikar N G 1979 Phys. Rev. B 19 499
[27] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[28] Smit J and Wijn H P J 1959 Ferrites p. 143 (New York: Wiley)
[29] Benenson W, Harris J W, Stöcker H and Lutz H 2002 Handbook of Physics (Berlin: Springer-Verlag)
[30] Bercoff P G and Bertorello H R 1997 J. Magn. Magn. Mater. 169 314
[31] Goldner L S and Ahlers G 1992 Phys. Rev. B 45 13129
[32] Le Guillou J C and Zinn-Justin J 1985 J. Phys. Lett. 46 137
[33] Baillie C F, Gupta R, Hawick K A and Pawley G S 1992 Phys. Rev. B 45 10438
[34] Ferrenberg, A M and Landau D P 1991 Phys. Rev. B 44 5081
[35] Adler J 1983 J. Phys. A 16 3585
[36] Baker G A J, Nickel B G and Meiron D I 1978 Phys. Rev. B 17 1365
[37] George M J and Rehr J 1984 Phys. Rev. Lett. 53 2063
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[3] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[4] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[5] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[6] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[7] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[8] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[9] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[10] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[11] Baseline optimization for scalar magnetometer array and its application in magnetic target localization
Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇). Chin. Phys. B, 2018, 27(6): 060703.
[12] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[13] To what extent of ion neutralization can multivalent ion distributions around RNA-like macroions be described by Poisson-Boltzmann theory?
Gui Xiong(熊贵), Kun Xi(席昆), Xi Zhang(张曦), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2018, 27(1): 018203.
[14] Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol
Song He(何松), Xiang Zhang(张祥), Bingchu Yang(杨兵初), Xiaomei Xu(徐晓梅), Hui Chen(陈辉), Conghua Zhou(周聪华). Chin. Phys. B, 2017, 26(7): 078103.
[15] Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles
Yuanyuan Wang(王元元), Huaqing Xie(谢华清), Zihua Wu(吴子华), Jiaojiao Xing(邢姣娇). Chin. Phys. B, 2016, 25(9): 096104.
No Suggested Reading articles found!