Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048102    DOI: 10.1088/1674-1056/28/4/048102

Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane

Yuan Guo(郭源)1, Chunmei Tang(唐春梅)1, Xinbo Wang(王鑫波)1, Cheng Wang(王成)1, Ling Fu(付玲)2
1 College of Science, Hohai University, Nanjing 210098, China;
2 College of Agricultural Engineering, Nanyang Normal University, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province;Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China

Membrane technology has been used for H2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H2 from the impurity gases (H2, N2, H2O, CO, Cl2, and CH4) by the bilayer porous graphitic carbon nitride(g-C3N4) membrane. Theoretically, the bilayer g-C3N4 membrane with a diameter of about 3.25 Å should be a perfect candidate for H2 purification from these mixed gases, which is verified by the high selectivity (S) for H2 over other kinds of gases (3.43×1028 for H2/N2; 1.40×1028 for H2/H2O; 1.60×1026 for H2/CO; 4.30×1014 for H2/Cl2; 2.50×1055 for H2/CH4), and the permeance (P) of H2 (13 mol/m2·s·Pa) across the bilayer g-C3N4 membrane at 300 K, which should be of great potential in energy and environmental research. Our studies highlight a new approach towards the final goal of high P and high S molecular-sieving membranes used in simple structural engineering.

Keywords:  g-C3N4      gas separation      density functional      molecular dynamics simulation  
Received:  17 November 2018      Revised:  11 February 2019      Published:  05 April 2019
PACS:  81.05.Rm (Porous materials; granular materials)  
  81.05.U- (Carbon/carbon-based materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018B19414), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010), the National Natural Science Foundation of China (Grant Nos. 51776094 and 51406075), the Program of Henan Provincial Department of Education, China (Grant No. 16A330004), the Special Fund of Nanyang Normal University, China (Grant No. ZX2016003), the Science and Technology Program of Henan Department of Science and Technology, China (Grant No. 182102310609), and the Scientific Research and Service Platform Fund of Henan Province, China (Grant No. 2016151).

Corresponding Authors:  Chunmei Tang, Ling Fu     E-mail:;

Cite this article: 

Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲) Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane 2019 Chin. Phys. B 28 048102

[1] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
[2] Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E and Silva C M 2018 Sep. Purif. Rev. 47 229
[3] Bojdys M J, Müller J O, Antonietti M and Thomas A 2008 Chem.-Eur. J. 14 8177
[4] Ockwig N W and Nenoff T M 2007 Chem. Rev. 107 4078
[5] Sedivy V M 2008 National Salt Conference
[6] Bai H and Yeh A C 1997 Ind. Eng. Chem. Res. 36 2490
[7] Bara J E, Gabriel C J, Hatakeyama E S, Carlisle T K, Lessmann S, Noble R D and Gin D L 2008 J. Membrane Sci. 321 3
[8] Bernardo P, Drioli E and Golemme G 2009 Ind. Eng. Chem. Res. 48 4638
[9] Spillman R W 1989 Chem. Eng. Prog. 85 41
[10] Yu M, Noble R D and Falconer J L 2011 Acc. Chem. Res. 44 1196
[11] Vos R M and Verweij H 1998 Science 279 1710
[12] Shiflett M B and Foley H C 1999 Science 285 1902
[13] Hong T, Chatterjee S, Mahurin S M, Fan F, Tian Z, Jiang D E, Long B K, Mays J W, Sokolov A P and Saito T 2017 J. Membrane Sci. 530 213
[14] Dong J, Lin Y S, Kanezashi M and Tang Z 2008 J. Appl. Phys. 104 13
[15] Oyama S T, Lee D, Hacarlioglu P and Saraf R F 2004 J. Membr Sci. 244 45
[16] Gates B C 1992 Catalytic Chemistry
[17] Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A and Passerone D 2010 Small 6 2266
[18] Hu W, Wu X, Lia Z and Yang J 2013 Phys. Chem. Chem. Phys. 15 5753
[19] Jiao Y, Du A, Hankel M, Zhu Z, Rudolphb V and Smith S C 2011 Chemi. Commun. 47 11843
[20] Winter M and Brodd R J 2004 Chem. Rev. 10 4245
[21] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q and Cheng H M 2010 J. Am. Chem. Soc. 132 11642
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[23] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[24] Bunch J S, Verbridge S S, Alden J S, Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
[25] Leenaerts O, Partoens B and Peeters F M 2008 Appl. Phys. Lett. 93 193107
[26] Jiang D E, Cooper V R and Dai S P 2009 Nano. Lett. 9 4019
[27] Shan M, Xue Q Jing N Ling C, Zhang T, Yan Z and Zheng J 2012 Nanoscale 4 5477
[28] Fischbein M D and Drndić M 2008 Appl. Phys. Lett. 93 113107
[29] Du A and Smith S C 2010 J. Phys. Chem. Lett. 2 73
[30] Koenig S P, Wang L, Pellegrino J and Bunch J S S 2012 Nat. Nanotechnol. 7 728
[31] Zhu L, Xue Q Z, Li X F, Jin Y K, Zheng H X, Wu T T and Guo Q K 2015 Acs Appl. Mater. Inter. 7 28502
[32] Du H, Li J, Zhang J, Su G, Li X and Zhao Y S 2011 J. Phys. Chem. C 115 23261
[33] Zhang X, Tang C and Jiang Q 2016 Int. J. Hydrogen Energy 41 10776
[34] Zhu L, Xue Q, Li X, Wu T, Jin Y and Xing W 2015 J. Mater. Chem. A 3 21351
[35] Lu R, Meng Z, Rao D, Wang Y, Shi Q, Zhang Y, Kan E, Xiao C, Deng K I 2014 Nanoscale 6 9960
[36] Huang C, Wu H, Deng K Tangb W and Kan E 2014 Phys. Chem. Chem. Phys. 16 25755
[37] Kroke E, Schwarz M, Bordon E H, Kroll P, Noll B and Norman A D 2002 New. J. Chem. 26 508
[38] Fang L, Ohfuji H, Shinmei T and Irifune T 2011 Diam. Relat. Mater. 20 819
[39] Ji Y, Dong H, Lin H, Zhang L, Houa T and Li Y 2016 RSC Adv. 6 52377
[40] Jiao Y, Du A, Smith S C, Zhu Z and Qiao S Z 2015 J. Mater. Chem. A 3 6767
[41] Park H B, Jung C H Lee Y M Hill A J, Pas S J, Mudie S T, Wagner E V, Freeman B D and Cookson D J 2007 Science 318 254
[42] Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T and Ling C 2016 J. Mater. Chem. A 4 15015
[43] Chang X, Zhu L, Xue Q, Li X, Guo T, Li X and Ma M 2018 J. CO2 Util. 26 294
[44] Du N, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L and Guiver M D 2011 Nat. Mater. 10 372
[45] Kesting R E, Fritzsche A K, Murphy M K, Cruse C A, Handermann A C, Malon R F and Moore 1990 J. Appl. Polym. Sci. 40 1557
[46] Robeson L M 1991 J. Membr. Sci. 62 165
[47] Wang X, Mehandzhiyski A Y, Arstad B, Van Aken K L, Mathis T S, Gallegos A, Tian Z, Ren D, Sheridan E, Grimes B A, Jiang D E, Wu J, Gogotsi Y and Chen D 2017 J. Am. Chem. Soc. 139 18681
[48] Ackern F V, Krasemann L and Tieke B 1998 Thin Solid Films 327 762
[49] Bartolomei M and Giorgi G 2016 ACS Appl. Mater. Interfaces 8 27996
[50] Gadipelli S and Guo Z X 2015 Prog. Mater. Sci. 69 1
[51] Zhang X, Xie X, Wang H, Zhang J, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 18
[52] Li Y, Zhou Z, Shena P and Chen Z 201 Chem. Commun. 46 3672
[53] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[54] Delley B 2000 J. Chem. Phys. 113 7756
[55] Krasnov P O, Ding F, Singh, A K and Yakobson B I 2007 J. Phys. Chem. C 111 17977
[56] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[57] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[58] Semiempirical G S 2006 J. Comput. Chem. 27 1787
[59] Si L and Tang C 2017 Int. J. Hydrogen Energy 42 16611
[60] Wang X, Tang C, Zhu W, Zhou X, Zhou Q and Cheng C 2018 J. Physl Chem. C 122 9654
[61] Wu F, Liu Y, Yu G, Shen D, Wang Y and Kan E 2012 J. Phys. Chem. Lett. 3 3330
[62] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[63] Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed 128 11609
[64] Wu T, Xue Q, Ling C, Shan M, Liu Z, Tao Y and Li X 2014 J. Phys. Chem. C 118 7369
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[7] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[8] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[9] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[10] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[11] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[12] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[13] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[14] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!