Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044202    DOI: 10.1088/1674-1056/28/4/044202

Enhancement of spatial resolution of ghost imaging via localizing and thresholding

Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利)
Shaanxi Provincial Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, and Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China

In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show that by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of √2 same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.

Keywords:  ghost imaging      localization      thresholding      post-selection      resolution enhancement  
Received:  07 November 2018      Revised:  30 December 2018      Published:  05 April 2019
PACS:  42.30.-d (Imaging and optical processing)  
  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
  87.63.lm (Image enhancement) (Spatial resolution)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11534008, 11605126, and 11804271), the Fund from the Ministry of Science and Technology of China (Grant No. 2016YFA0301404), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ1025), the Doctoral Fund of the Ministry of Education of China (Grant Nos. 2016M592772 and 2018M631137), and the Fundamental Research Funds for the Central Universities.

Corresponding Authors:  Ruifeng Liu, Fuli Li     E-mail:;

Cite this article: 

Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利) Enhancement of spatial resolution of ghost imaging via localizing and thresholding 2019 Chin. Phys. B 28 044202

[1] Zhang P L, Gong W L, Shen X, Huang D J and Han S S 2009 Opt. Lett. 34 1222
[2] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[3] Wang Y L, Wang F R, Liu R F, Chen D X, Gao H, Zhang P and Li F L 2015 Opt. Lett. 40 5323
[4] Zhang E F, Lin H Z, Liu W T, Li Q and Chen P X 2015 Opt. Express 23 33506
[5] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 3429
[6] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[7] Valencia A and Scarcelli G and D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[8] Gatti A, Bache M, Magatti D, Brambilla E, Ferri F and Lugiato L A 2006 J. Mod. Opt. 53 739
[9] Liu Q, Luo K H, Chen X H and Wu L A 2010 Chin. Phys. B 19 094211
[10] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[11] Yang H, Wu S, Wang H B, Cao D Z, Zhang S H, Xiong J and Wang K G 2018 Phys. Rev. A 98 053853
[12] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[13] Liu R F, Fang A P, Zhou Y, Zhang P, Gao S Y, Li H R, Gao H and Li F L 2016 Phys. Rev. A 93 013822
[14] Bentley S J and Boyd R W 2004 Opt. Express 12 5735
[15] Liu R F, Zhang P, Zhou Y, Gao H and Li F L 2014 Sci. Rep. 4 4068
[16] Meyers R, Deacon K S and Shih Y H 2008 Phys. Rev. A 77 041801
[17] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285
[18] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[19] Stantchev R I, Sun B Q and Hornett S M, Hobson P A, Gibson G M, Padgett M J and Hendry E 2016 Sci. Adv. 2 e1600190
[20] Rayleigh L 1879 XXXI. Investigations in optics, with special reference to the spectroscope (Taylor & Francis) pp. 261-274
[21] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[22] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[23] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290
[24] Rodríguez A D, Clemente P, Irles E, Tajahuerce E and Lancis J 2014 Opt. Lett. 39 3888
[25] Gazit S, Szameit A, Eldar Y C and Segev M 2009 Opt. Express 17 23920
[26] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[27] Kuplicki K and Chan K W C 2016 Opt. Express 24 26766
[28] Zhang S Z, Wang W, Yu R and Yang X X 2016 Laser Phys. 26 055007
[29] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep. 6 38077
[30] Yang Z, Magaña-Loaiza O S, Mirhosseini M, Zhou Y Y, Gao B S, Gao L, Rafsanjani S M H, Long G L and Boyd R W 2017 Light Sci. Appl. 6 e17013
[31] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Science 313 1642
[32] Cheezum M K, Walker W F and Guilford W H 2001 Biophys. J. 81 2378
[33] Giovannetti V, Lloyd S, Maccone L, Shapiro J H 2009 Phys. Rev. A 79 013827
[34] Guerrieri F, Maccone L, Wong F N C, Shapiro J H, Tisa S and Zappa F 2010 Phys. Rev. Lett. 105 163602
[35] Mouradian S, Wong F N C and Shapiro J H 2011 Opt. Express 19 5480
[36] Goodman J W 1995 Introduction to Fourier optics (McGraw-Hill) pp. 96-125
[37] Chan K W C and O'Sullivan M N and Boyd R W 2009 Opt. Lett. 34 3343
[38] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[39] Meyers R E, Deacon K S and Shih Y H 2012 Appl. Phys. Lett. 100 131114
[40] Liu X F, Li M F, Yao X R, Yu W K, Zhai G J and Wu L A 2013 AIP Adv. 3 052121
[41] Chen H, Peng T and Shih Y H 2013 Phys. Rev. A 88 023808
[42] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[43] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[44] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 17 16892
[45] Mouradian S, Wong F N C and Shapiro J H 2011 Opt. Express 19 5480
[46] Thompson R E, Larson D R and Webb W W 2002 Biophys. J. 82 2775
[1] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[2] High-precision three-dimensional atom localization via probe absorption at room temperature
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Dingyu Cai(蔡定宇), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2020, 29(12): 124205.
[3] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[4] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
[5] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[6] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[7] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[8] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), Yin Zhong(钟寅). Chin. Phys. B, 2020, 29(10): 107301.
[9] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[10] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[11] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
[12] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[13] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[14] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[15] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
No Suggested Reading articles found!