Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074213    DOI: 10.1088/1674-1056/27/7/074213

Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen

Yu-Dan Gou(苟于单)1, De-Xiang Zhang(张德翔)1, Yi-Jun Wang(王易君)1, Chang-Hua Zhang(张昌华)1, Ping Li(李萍)1, Xiang-Yuan Li(李象远)2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Chemical Engineering, Sichuan University, Chengdu 610065, China

Concentration time-histories of H2O were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H+OH+M=H2O+M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H2O among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.

Keywords:  tunable diode laser absorption spectroscopy      H2O time-history profile      combustion process      reaction mechanism  
Received:  30 January 2018      Revised:  15 March 2018      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0202400 and 2017YFB0202401).

Corresponding Authors:  Chang-Hua Zhang     E-mail:

Cite this article: 

Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远) Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen 2018 Chin. Phys. B 27 074213

[1] Tang C L, Zhang Y J and Huang Z H 2014 Renew. Sust. Energ. Rev. 30 195
[2] Jain I P 2009 Int. J. Hydrogen Energy 34 7368
[3] Hong Z K, Davidson D F and Hanson R K 2011 Combust. Flame 158 633
[4] Konnov A A 2008 Combust. Flame 152 507
[5] Burke M, Chaos M, Ju Y G, Dryer F L and Klippenstein S J 2012 Int. J. Chem. Kinet. 44 444
[6] Li J, Zhao Z W, Kazakov A and Dryer F L 2004 Int. J. Chem. Kinet. 36 566
[7] Ó Conaire M, Curran H J, Simmie J M, Pitz W J and Westbrook C K 2004 Int. J. Chem. Kinet. 36 603
[8] Kéromnés A, Metcalfe W K, Heufer K A, Donohoe N, Das A K, Sung C J, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci M C, Petersen E L, Pitz W J and Curran H J 2013 Combust. Flame 160 995
[9] Varga T, Nagy T, Olm C, Zsély I G, Pálvölgyi R, Valko E, Vincze G, Cserháti M, Curran H J and Turányi T 2015 Proc. Combust. Inst. 35 589
[10] Zhou C W, Li Y, O'Connor E, et al. 2016 Combust. Flame 167 353
[11] Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A P and Law C K 2012 Prog. Energy Combust. Sci. 38 468
[12] Zhao H, Fu J P, Haas F M and Ju Y G 1991 Combust. Flame 183 253
[13] Boivin P, Sánchez A L and Williams F A 2017 Combust. Flame 176 489
[14] Hu E J, Pan L, Gao Z H, Lu X, Meng X and Huang Z H 2016 Int. J. Hydrogen Energy 41 13261
[15] Davis S G, Joshi A V, Wang H and Egolfopoulos F 2005 Proc. Combust. Inst. 30 1283
[16] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Lissianski V V and Qin Z[2010]
[17] Niemann U, Seshadri K and Williams F A 2013 Proc. Combust. Inst. 34 881
[18] Zamashchikov V V, AlekseevV A and Konnov A A 2014 Int. J. Hydrogen Energy 39 1874
[19] Hanson R K and Davidson D F 2014 Prog. Energy Combust. Sci. 44 103
[20] Zhang C, He J, Li Y, Li X and Li P 2015 Fuel 154 346
[21] Zhang C H, Li P, Guo J J and Li X Y 2012 Energy Fuels 26 1107
[22] Urzay J, Kseib N, Davidson D F, Iaccarino G and Hanson R K 2014 Combust. Flame 161 1
[23] Hong Z K, Farooq A, Barbour E A, Davidson D F and Hanson R K 2009 J. Phys. Chem. A 113 12919
[24] Gou Y D, Lu P F, He J N, Zhang C H, Li P and Li X Y 2018 Spectrosc. Spect. Anal. 38 176 (in Chinese)
[25] Xia H H, Kan R F, Liu J G, Xu Z Y and He Y B 2016 Chin. Phys. B 25 064205
[26] Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Ra. 130 4
[27] ANSYS CHEMKIN 17.0 (15151), ANSYS Reaction Design:San Diego 2016
[28] Tekawade A, Kosiba G and Oehlschlaeger M A 2016 Combust. Flame 173 402
[29] Wang Q D, Fang Y M, Wang F and Li X Y 2013 Proc. Combust. Inst. 34 187
[1] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[2] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[3] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[4] Water on surfaces from first-principles molecular dynamics
Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜)$. Chin. Phys. B, 2020, 29(11): 116804.
[5] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[6] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[7] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[8] Growth mechanism of atomic-layer-deposited TiAlC metal gatebased on TiCl4 and TMA precursors
Jinjuan Xiang(项金娟), Yuqiang Ding(丁玉强), Liyong Du(杜立永), Junfeng Li(李俊峰),Wenwu Wang(王文武), Chao Zhao(赵超). Chin. Phys. B, 2016, 25(3): 037308.
[9] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi, Du Zhen-Hui, Ma Yi-Wen, Xu Ke-Xin. Chin. Phys. B, 2013, 22(3): 034203.
[10] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu, Ding Yan-Jun, Peng Zhi-Min, Li Xiao-Hang. Chin. Phys. B, 2012, 21(12): 127803.
[11] Influence of laser intensity in second-harmonic detection with tunable diode laser multi-pass absorption spectroscopy
Kan Rui-Feng, Dong Feng-Zhong, Zhang Yu-Jun, Liu Jian-Guo, Liu Cheng, Wang Min, Gao Shan-Hu, Chen Jun. Chin. Phys. B, 2005, 14(9): 1904-1909.
No Suggested Reading articles found!