Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074212    DOI: 10.1088/1674-1056/27/7/074212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupled resonator-induced transparency on a three-ring resonator

Xinquan Jiao(焦新泉)1,2, Haobo Yu(于皓博)1,2, Miao Yu(于淼)1,2, Chenyang Xue(薛晨阳)1,2, Yongfeng Ren(任勇峰)1,2
1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China;
2 Key Laboratory of Instrumentation Science & Dynamic Measurement(Ministry of Education), North University of China, Taiyuan 030051, China
Abstract  The coupled resonator-induced transparency (CRIT) phenomenon, which is analogous to electromagnetically induced transparency in atomic systems, can occur in an original integrated optical resonator system due to the coherent interference of the coupled optical resonators. The system was composed of three ring resonators on silicon, each with the same cavity size, and the optical coupling to the input and output ports was achieved using grating with a power coupling efficiency of 36%. A CRIT resonance whose spectrum shows a narrow transparency peak with a low group velocity was demonstrated. The quality factor of the ring resonator can attain a value up to 6×104, and the harmonic wavelength can be controlled by adjusting the temperature. The through and drop transmission spectra of the resonator are reconciled well with each other and also consistent well with the theoretical analysis.
Keywords:  coupled resonator-induced transparency      three-ring resonator      coupling efficiency      transmission spectra      quality factor  
Received:  09 February 2018      Revised:  30 March 2018      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771434, 91123036, 61178058, 61275166, and 61076111) and the National Science Fund for Distinguished Young Scholars, China (Grant No. 51225504).
Corresponding Authors:  Xinquan Jiao     E-mail:  jiaoxinquan@nuc.edu.cn

Cite this article: 

Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰) Coupled resonator-induced transparency on a three-ring resonator 2018 Chin. Phys. B 27 074212

[1] Smith D D, Chang H, Fuller K A, Rosenberger A and Boyd R W 2004 Phys. Rev. A 69 063804
[2] Oishi T, Suzuki R, Sultana P and Tomita M 2012 Opt. Lett. 37 2964
[3] Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S and Lipson M 2006 Phys. Rev. Lett. 96 123901
[4] Xu Q, Shakya J and Lipson M 2006 Opt. Express 14 6463
[5] Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98 213904
[6] Naweed A, Farca G, Shopova S I and Rosenberger A T 2005 Phys. Rev. A 71 043804
[7] Little B E, Chu S T, Haus H A, Foresi J and Laine J P 1997 J. Lightw. Technol. 15 998
[8] Amemiya Y, Tokunaga T, Tanushi Y and Yokoyama S 2009 Opt. Rev. 16 247
[9] Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901
[10] Mancinelli M, Borghi M, Bettotti P, Fedeli J M and Pavesi L 2013 J. Lightw. Technol. 31 2340
[11] Ang T Y and Ngo N Q 2012 J. Opt. Soc. Am. B 29 1094
[12] Wang N, Zhang Y D and Yuan P 2011 Chin. Phys. B 20 044203
[13] Li Z Q, Bai L D, Gu E D, Xie R J, Liu T L, Niu L Y and Feng D D 2017 Acta Phys. Sin. 20 204203 (in Chinese)
[14] Zhang Y D, Wang N, Tian H, Wang H, Qiu W, Wang J F and Yuan P 2008 Phys. Lett. A 372 5848
[15] Zhou Z and Feng L S 2017 IEEE Photon. J. 99 6600112
[16] Zhu Q M, Jiang X H, Yu Y P, Cao R Y, Zhang H X, Li D P and Li Y B 2018 IEEE Photon. J. 1 6600311
[17] Xu X H, Chen Y Q, Guo Z W and Miao X Y 2018 Acta Phys. Sin. 2 024210 (in Chinese)
[18] Jiao X Q, Chen J B and Wang X L 2015 Acta Phys. Sin. 14 144202 (in Chinese)
[19] Totsuka K and Tomita M 2007 Opt. Lett. 32 3197
[20] Chen T, Lee H, Li J, Painter O and Vahala K J 2012 Nat. Commun. 3 867
[21] Tang Y H, Lin Y H, Chen P L, Shiao M H and Hsiao C N 2014 Micro & Nano Lett. 9 395
[22] Xiao S J, Khan M H, Shen H and Qi M H 2007 Opt. Express 15 10553
[23] Vlasov Y and Mcnab S 2004 Opt. Express 12 1622
[24] Maleki L, Matsko A B, Savchenkov A A and Ilchenko V S 2004 Opt. Lett. 29 626
[25] Liu Y, Sun Y, Yi Y J, Tian L, Cao Y, Chen C M, Sun X Q and Zhang D M 2017 Chin. Phys. B 26 124215
[26] Cui D F, Wei L P, Liu C and Liu Y Y 2013 Micro & Nano Lett. 10 619
[1] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[2] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[3] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[4] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[5] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[6] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[7] Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进). Chin. Phys. B, 2018, 27(9): 094217.
[8] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[9] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[10] Apodized grating coupler using fully-etched nanostructures
Hua Wu(武华), Chong Li(李冲), Zhi-Yong Li(李智勇), Xia Guo(郭霞). Chin. Phys. B, 2016, 25(8): 084212.
[11] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[12] Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes
Qiu Hua-Cheng (邱华诚), Dara Feili, Wu Xue-Zhong (吴学忠), Helmut Seidel. Chin. Phys. B, 2014, 23(2): 027701.
[13] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[14] Plasmon resonance coupling in strongly coupled gold nanotube arrays with structural defects
Zhou Xin (周昕), Fang Jian-Shu (方见树), Yang Di-Wu (杨迪武), Liao Xiang-Ping (廖湘萍 ). Chin. Phys. B, 2012, 21(8): 084202.
[15] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
No Suggested Reading articles found!