Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056101    DOI: 10.1088/1674-1056/27/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Compression behavior and phase transition of β-Si3N4 under high pressure

Hong-xia Gong(龚红霞)1, Zi-li Kou(寇自力)1, Cong Fan(樊聪)1, Hao Liang(梁浩)1, Qi-ming Wang(王齐明)1, Lei-lei Zhang(张雷雷)1, Fang Peng(彭放)1, Ming Yang(杨鸣)1, Xiao-lin Ni(倪小林)1, Jing Liu(刘景)2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The compressibility and pressure-induced phase transition of β-Si3N4 were investigated by using an angle dispersive x-ray diffraction technique in a diamond anvil cell at room temperature. Rietveld refinements of the x-ray powder diffraction data verified that the hexagonal structure (with space group P63/m, Z=2 formulas per unit cell) β-Si3N4 remained stable under high pressure up to 37 GPa. Upon increasing pressure, β-Si3N4 transformed to δ-Si3N4 at about 41 GPa. The initial β-Si3N4 was recovered as the pressure was released to ambient pressure, implying that the observed pressure-induced phase transformation was reversible. The pressure-volume data of β-Si3N4 was fitted by the third-order Birch-Murnaghan equation of state, which yielded a bulk modulus K0=273(2) GPa with its pressure derivative K'0=4 (fixed) and K0=278(2) GPa with K'0=5. Furthermore, the compressibility of the unit cell axes (a and c-axes) for the β-Si3N4 demonstrated an anisotropic property with increasing pressure.

Keywords:  phase transition      bulk modulus      β-Si3N4      high pressure in situ x-ray diffraction  
Received:  25 November 2017      Revised:  02 February 2018      Published:  05 May 2018
PACS:  61.05.cp (X-ray diffraction)  
  31.15.ae (Electronic structure and bonding characteristics)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  64.70.K-  
Corresponding Authors:  Zi-li Kou     E-mail:  kouzili@scu.edu.cn

Cite this article: 

Hong-xia Gong(龚红霞), Zi-li Kou(寇自力), Cong Fan(樊聪), Hao Liang(梁浩), Qi-ming Wang(王齐明), Lei-lei Zhang(张雷雷), Fang Peng(彭放), Ming Yang(杨鸣), Xiao-lin Ni(倪小林), Jing Liu(刘景) Compression behavior and phase transition of β-Si3N4 under high pressure 2018 Chin. Phys. B 27 056101

[10] Wang W, He D, Tang M, Li F, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49
[1] Clarke D R, Lange F F and Schnittgrund G D 1982 J. Am. Ceram. Soc. 65 c51
[11] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueş H, Kroll P and Boehler R 1999 Nature 400 340
[2] He H, Sekine T, Kobayashi T, Hirosaki H and Suzuki I 2000 Phys. Rev. B 62 11412
[12] Nishiyama N, Ishikawa R, Ohfuji H, Marquardt H, Kurnosov A, Taniguchi T, Kim B N, Yoshida H, Masuno A and Bednarcik J 2017 Sci. Rep. 7 44755
[3] Jack K H 1976 J. Mater. Sci. 11 1135
[13] Tanaka I, Oba F, Sekine T, Ito E, Kubo A, Tatsumi K, Adachi H and Yamamoto T 2002 J. Mater. Res. 17 731
[4] Zhang C, Shun J X, Tian R G and Zhou S Y 2007 Acta Phys. Sin. 56 5969(in Chinese)
[14] Zerr A, Kempf, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
[5] Jiang J Z, Lindelov H, Gerward L, Ståhl K, Recio J M, Morisanchez P, Carlson S, Mezouar M, Dooryhee E and Fitch A 2002 Phys. Rev. B 65 161202
[15] Zerr A 2001 Phys. Status Solidi B 227 R4
[6] Jiang J Z, Ståhl K, Berg R W, Frost D J, Zhou T J and Shi P X 2000 Europhys. Lett. 51 62
[16] Kroll P and Appen J V 2001 Phys. Status Solidi B 226 R6
[7] Paszkowicz W, Minikayev R, Piszora P, Knapp M, Bähtz C, Recio J M, Marqués M, Morisánchez P, Gerward L and Jiang J Z 2004 Phys. Rev. B 69 052103
[17] Xu B, Dong J, Mcmillan P F, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[8] Soignard E, Somayazulu M, Dong J, Sankey O F and Mcmillan P F 2001 J. Phys.:Condens. Matter 13 557
[18] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[9] Togo A and Kroll P 2008 J. Comput. Chem. 29 2255
[19] Ogata S, Hirosaki N, Kocer C and Shibutani Y 2004 Acta Mater. 52 233
[10] Wang W, He D, Tang M, Li F, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49
[20] Li Y M, Kruger M B and Nguyen J H 1997 Solid State Commun. 103 107
[11] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueş H, Kroll P and Boehler R 1999 Nature 400 340
[21] Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
[12] Nishiyama N, Ishikawa R, Ohfuji H, Marquardt H, Kurnosov A, Taniguchi T, Kim B N, Yoshida H, Masuno A and Bednarcik J 2017 Sci. Rep. 7 44755
[22] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[13] Tanaka I, Oba F, Sekine T, Ito E, Kubo A, Tatsumi K, Adachi H and Yamamoto T 2002 J. Mater. Res. 17 731
[23] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[14] Zerr A, Kempf, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
[24] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[15] Zerr A 2001 Phys. Status Solidi B 227 R4
[25] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 14
[16] Kroll P and Appen J V 2001 Phys. Status Solidi B 226 R6
[26] Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
[17] Xu B, Dong J, Mcmillan P F, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[27] Larson A C and Dreele R B V 1994 Los Alamos National Laboratory Report No LAUR 86
[18] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[28] Rietveld H M 1969 J. Appl. Cryst. 2 65
[19] Ogata S, Hirosaki N, Kocer C and Shibutani Y 2004 Acta Mater. 52 233
[29] Toby B H 2001 J. Appl. Cryst. 34 210
[20] Li Y M, Kruger M B and Nguyen J H 1997 Solid State Commun. 103 107
[30] Qian Z, Xiang W and Shan Q 2017 Chin. Phys. B 26 090703
[21] Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
[31] Birch F 1978 J. Geophys. Res. 83 1257
[22] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[32] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[23] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[33] Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 J. Appl.Cryst. 40 26
[24] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[34] Hou H J, Zhu H J, Lao C W, Li S P, Guan H and Xie L H 2016 Braz. J. Phys. 46 393
[25] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 14
[35] Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 90 191903
[26] Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
[27] Larson A C and Dreele R B V 1994 Los Alamos National Laboratory Report No LAUR 86
[28] Rietveld H M 1969 J. Appl. Cryst. 2 65
[29] Toby B H 2001 J. Appl. Cryst. 34 210
[30] Qian Z, Xiang W and Shan Q 2017 Chin. Phys. B 26 090703
[31] Birch F 1978 J. Geophys. Res. 83 1257
[32] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[33] Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 J. Appl.Cryst. 40 26
[34] Hou H J, Zhu H J, Lao C W, Li S P, Guan H and Xie L H 2016 Braz. J. Phys. 46 393
[35] Zhang R F, Sheng S H and Veprek S 2007 Appl. Phys. Lett. 90 191903
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[3] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[6] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[14] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[15] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
No Suggested Reading articles found!