Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 053101    DOI: 10.1088/1674-1056/27/5/053101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation

Ghasemi Hasan, Mokhtari Ali
Department of Physics, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
Abstract  In the present work, firstly, a first-principles study of the structural, electronic, and electron transport properties of the Hgx Mg(1-x) Te (HMT) ternary compound is performed using the ABINIT package and the results are compared with Cd0.9Zn0.1 Te (CZT) as a current room-temperature photodetector. Next, the response functions of Hg0.6Mg0.4 Te and Cd0.9Zn0.1 Te under electromagnetic irradiation with 0.05 MeV, 0.2 MeV, 0.661 MeV and 1.33 MeV energies are simulated by using the MCNP code. According to these simulations, the Hg0.6Mg0.4 Te ternary compound is suggested as a good semiconductor photodetector for use at room temperature.
Keywords:  band gap      charge-carrier transport      photodetector      density functional theory  
Received:  08 November 2017      Revised:  16 January 2018      Accepted manuscript online: 
PACS:  31.15.E (Density-functional theory)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  29.40.-n (Radiation detectors)  
  29.30.Kv (X- and γ-ray spectroscopy)  
Corresponding Authors:  Ghasemi Hasan     E-mail:  nifa2616@gmail.com

Cite this article: 

Ghasemi Hasan, Mokhtari Ali Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation 2018 Chin. Phys. B 27 053101

[13] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghose Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Range T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G and Zwanziger J W 2009 Comput. Phys. Commun 180 2582
[1] Schlesingera T E, Toneyb J E, Yoonc H, Leed E Y, Brunettd B A, Franksd L and Jamesd R B 2001 Mater. Sci. Eng. 32 103
[14] https://mcnp.lanl.gov/
[2] Owens A and Peacock A 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 531 18
[15] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[3] Kim J J 2012 Characterization of HgCdTe and Related Materials and Substrates for Third Generation Infrared Detectors (PhD Thesis:Arizona State University) p. 1
[16] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[4] Rogalski A 1989 Quantum Electronics 13 299
[17] Troullier W and Martins J L 1991 Phys. Rev. B 43 1993
[5] Svane A, Christensen N E, Cardona M, Chantis A N, Schilfgaarde M and Kotani T 2011 Phy. Rev. B 84 205205
[18] Perdew J, Burke K and Ernzerho M 1996 Phys. Rev. Lett. 77 3865
[6] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Heidelberg:Springer) p. 61
[19] Hartwigsen C, Goedeckerand S and Hutter J 1998 Phys. Rev. B 58 3641
[7] Aldachi S 2009 Properties of Group-IV Ⅲ-V and Ⅱ-VI Semiconductors (New York:John Wiley & Sons)
[20] Poon H C, Feng Z C, Feng Y P and Li M F J 1995 Phys. Condens. Matter 7 2783
[8] Gokoglu G, Durandurada Mand Gulseren O Comput. Mater. Sci. 4 7593
[21] Bechiri A, Benmakhlouf F and Bouarissa N 2009 Phys. Procedia 2 803
[9] Imad K, Fazie S, Iftikhar A and Zahid A 2015 J. Phys. Chem. Solids 83 75
[22] Dargam T G, Capaz R B and Koiller B 1997 Braz. J. Phys. 27 4
[10] Paesler K, Kiinig B, Truchsess M, Pfeuffer-Jeschke A, Oehling S, Becker C R and Batke E 1998 J. Cryst. Growth 184/185 1209
[23] Mokhtari A 2007 J. Phys.:Condens. Matter 19 436213
[11] Mnasri S, Abdi-Ben Nasrallah S, Sfina N, Bouarissa N and Said M 2009 Semicond. Sci. Technol 24 095008
[24] Tiwari S 1992 Compound Semiconductor Device Physics (New York:Academic Press) p. 7
[12] Shi C, Tu Q, Fan H and Li S 2016 J. Micromech. Mol. Phys. 1 1650005
[25] Jena D 2004 Charge Transport in Semiconductors EE 698D Advanced Semiconductor Physics (University of Notre Dame)
[13] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghose Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Range T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G and Zwanziger J W 2009 Comput. Phys. Commun 180 2582
[26] Jacoboni C 2010 Theory of Electron Transport a Pathway from Elementary Physics to Nonequilibrium Green Functions (New York:Springer) p. 127
[14] https://mcnp.lanl.gov/
[27] Feng J, Xiao B, Chen J, Dua Y, Yua J and Zhou R 2011 Mater. Des. 32 3231
[15] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[28] Kittel C 2005 Introduction to Solid State Physics (New York:John Willey & Sons) p. 185
[16] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[17] Troullier W and Martins J L 1991 Phys. Rev. B 43 1993
[18] Perdew J, Burke K and Ernzerho M 1996 Phys. Rev. Lett. 77 3865
[19] Hartwigsen C, Goedeckerand S and Hutter J 1998 Phys. Rev. B 58 3641
[20] Poon H C, Feng Z C, Feng Y P and Li M F J 1995 Phys. Condens. Matter 7 2783
[21] Bechiri A, Benmakhlouf F and Bouarissa N 2009 Phys. Procedia 2 803
[22] Dargam T G, Capaz R B and Koiller B 1997 Braz. J. Phys. 27 4
[23] Mokhtari A 2007 J. Phys.:Condens. Matter 19 436213
[24] Tiwari S 1992 Compound Semiconductor Device Physics (New York:Academic Press) p. 7
[25] Jena D 2004 Charge Transport in Semiconductors EE 698D Advanced Semiconductor Physics (University of Notre Dame)
[26] Jacoboni C 2010 Theory of Electron Transport a Pathway from Elementary Physics to Nonequilibrium Green Functions (New York:Springer) p. 127
[27] Feng J, Xiao B, Chen J, Dua Y, Yua J and Zhou R 2011 Mater. Des. 32 3231
[28] Kittel C 2005 Introduction to Solid State Physics (New York:John Willey & Sons) p. 185
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[12] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[13] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
No Suggested Reading articles found!