Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050701    DOI: 10.1088/1674-1056/27/5/050701
GENERAL Prev   Next  

Optimization of pick-up coils for weakly damped SQUID gradiometers

Kang Yang(杨康)1,2,3, Jialei Wang(王佳磊)1,2,3, Xiangyan Kong(孔祥燕)1,2,3, Ruihu Yang(杨瑞虎)1,2,3, Hua Chen(陈桦)1,2,3
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The performance of a superconducting quantum interference device (SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo, we studied how the gradiometer performance parameters, including the current dipole sensitivity, spatial resolution and signal-to-noise ratio (SNR), are affected by its pick-up coil via MatLab simulation. Depending on the simulation results, the optimal pick-up coil design region for a certain gradiometer can be obtained. To verify the simulation results, we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection. The experimental measurements were conducted on a simple current dipole in a magnetically shielding room. The measurement results are well in coincidence with the simulation ones, indicating that the simulation model is useful in specific pick-up coil design.
Keywords:  superconducting quantum interference device (SQUID) gradiometer      spatial resolution      dipole sensitivity      signal-to-noise ratio  
Received:  25 December 2017      Revised:  02 March 2018      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  87.55.de (Optimization)  
Fund: Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund,China (Grant No.2015-JD-C104-060) and the National Natural Science Foundation of China (Grant No.61741122).
Corresponding Authors:  Xiangyan Kong     E-mail:  xykong@mail.sim.ac.cn

Cite this article: 

Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦) Optimization of pick-up coils for weakly damped SQUID gradiometers 2018 Chin. Phys. B 27 050701

[1] Liu C, Zhang Y, Muck M, Zhang S L, Krause H J, Braginski A I, Zhang G F, Wang Y L, Kong X Y, Xie X M, Offeharsser A and Jiang M H 2013 Supercond. Sci. Technol. 26 065002
[2] Lee Y H, Kwon H C, Kim J M, Park Y K and Park J C 1999 IEEE Trans. Magn. 35 4097
[3] Kong X Y, Zhang Y, Xie X M and Jiang M H 2013 IEICE Trans. Elec-tron. E96-C 320
[4] Lee Y H, Yu K K, Kim J M, Kwon H, Kim K and Park Y K 2008 Physica C 468 1942
[5] Kang C S, Lee Y H, Yu K K, Kwon H, Kim J M, Kim K, Lim H K, Park Y K and Lee S G 2009 IEEE Trans. Magn. 45 2882
[6] Kong X Y, Zhang S L, Wang Y L, Zeng J and Xie X M 2012 Phys. Procedia 36 286
[7] Alexander G 1999 IEEE Trans. Appl. Supercond. 9 3676
[8] Li H, Zhang S L, Qiu Y, Zhang Y S, Zhang C X, Kong X Y and Xie X M 2015 Chin. Phys. B 24 028501
[9] Wikswo J P 1978 AIP Conf. Proc. 44 p. 145
[10] Yang K, Chen H, Kong X Y, Lu L, Li M, Yang R H and Xie X M 2016 IEEE Trans. Appl. Supercond. 26 1602205
[11] Zhang Y, Liu C, Schmelz M, Krause H J, Braginski A I, Stolz R, Xie X M, Meyer H G, Offenhausser A and Jiang M H 2012 Supercond. Sci. Technol. 25 125007
[12] Brake H J M, Fleuren F H, Ulfman J A and Flokstra J 1986 Cryogenics 26 667
[1] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[2] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[3] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[4] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[5] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[6] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[7] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[8] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[9] Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography
Wali Faiz, Yuan Bao(鲍园), Kun Gao(高昆), Zhao Wu(吴朝), Chen-Xi Wei(卫晨希), Gui-Bin Zan(昝贵彬), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(4): 040602.
[10] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[11] Enhancement of signal-to-noise ratio of ultracold polar NaCs molecular spectra by phase locking detection
Wenhao Wang(王文浩), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Xiaofeng Wang(王晓锋), Yanyan Liu(刘艳艳), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123701.
[12] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[13] Stochastic resonance in an over-damped linear oscillator
Lin Li-Feng (林丽烽), Tian Yan (田艳), Ma Hong (马洪). Chin. Phys. B, 2014, 23(8): 080503.
[14] Theory of noise in a kilo-Hz cascaded high-energy Yb-doped nanosecond pulsed fiber amplifier
Liu Ming (刘明), Zhang Hai-Tao (张海涛), Gong Ma-Li (巩马理), Zhao Yue-Jin (赵跃进), Cheng Wen-Yong (程文雍), Meng Kuo (孟阔), Zheng Chao (郑超), Chen Yi-Zhu (陈倚竹). Chin. Phys. B, 2014, 23(4): 044214.
[15] Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2014, 23(11): 110703.
No Suggested Reading articles found!