Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048503    DOI: 10.1088/1674-1056/27/4/048503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Research on the radiation hardened SOI devices with single-step Si ion implantation

Li-Hua Dai(戴丽华)1,2, Da-Wei Bi(毕大炜)2, Zhi-Yuan Hu(胡志远)2, Xiao-Nian Liu(刘小年)1,2, Meng-Ying Zhang(张梦映)1,2, Zheng-Xuan Zhang(张正选)2, Shi-Chang Zou(邹世昌)2
1. University of Chinese Academy of Sciences, Beijing 100049, China;
2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  

Silicon-on-insulator (SOI) devices are sensitive to the total ionizing dose effect due to the existence of buried oxide. In this paper, an extra single-step Si ion implantation into buried oxide layer prior to the normal complementary metal-oxide-semiconductor transistor (CMOS) process is used to harden the SOI wafer. The top-Si quality of the hardened SOI wafer is confirmed to be good enough for device manufacturing through various characterization methods. The radiation experiments show that the total ionizing dose tolerance of the Si implanted SOI device is improved significantly. The metastable electron traps introduced by Si implantation is also investigated by electrical stress. The results show that these traps are very instable, and electrons will tunnel into or out of the metastable electron traps quickly after hot-electron-injection or hot-hole-injection.

Keywords:  silicon-on-insulator      total ionizing dose      Si ion implantation      metastable electron traps  
Received:  07 November 2017      Revised:  22 December 2017      Published:  05 April 2018
PACS:  85.30.Tv (Field effect devices)  
  61.80.Ed (γ-ray effects)  
  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
Corresponding Authors:  Li-Hua Dai     E-mail:  dailihua@mail.sim.ac.cn

Cite this article: 

Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌) Research on the radiation hardened SOI devices with single-step Si ion implantation 2018 Chin. Phys. B 27 048503

[1] Celler G K and Cristoloveanu S 2003 J. Appl. Phys. 93 4955
[2] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, et al. 2003 IEEE Trans. Nucl. Sci. 50 522
[3] Roche P and Gasiot G 2014 IEEE Nuclear and Space Radiation Effects Conference, July 14, 2014, Paris, France, p. Ⅲ-33
[4] Stahlbush R E, Campisi G J, McKitterick J B, et al. 1992 IEEE Trans. Nucl. Sci. 39 2086
[5] Warren W L, Shaneyfelt M R, Schwank J R, et al. 1993 IEEE Trans. Nucl. Sci. 40 1755
[6] Liu S T, Balster S, Sinha S, et al. 1999 IEEE Trans. Nucl. Sci. 46 1817
[7] Mrstik B J, Hughes H L, Gouker P, et al. 2003 IEEE Trans. Nucl. Sci. 50 1947
[8] Mrstik B J, Hughes H L, McMarr P J, et al. 2001 Microelectron. Eng. 59 285
[9] Alles M L 2007 IEEE Nuclear and Space Radiation Effects Conference, July 23, 2007, Honolulu, Hawai'i, p. I-30
[10] Bi D W, Zhang Z X, Chen M, et al. 2012 Nucl. Instrum. Methods Phys. Res. B 272 257
[11] Huang H X, Bi D W, Chen M, et al. 2014 IEEE Trans. Nucl. Sci. 61 1400
[12] Schwank J R, Fleetwood D M, Xiong H D, et al. 2004 Microelectron. Eng. 72 362
[13] Liu Y, Chen H B, Liu Y R, et al. 2015 Chin. Phys. B 24 088503
[14] Bi D W, Zhang Z X, Zhang S, et al. 2009 Chin. Phys. C 33 866
[15] Zhang E X, Qian C, Zhang Z X, et al. 2006 Chin. Phys. 15 792
[16] Mrstik B J, Hughes H L, McMarr P J, et al. 2000 IEEE Trans. Nucl. Sci. 47 2189
[17] Huang H X, Huang Y Y, Zheng J C, et al. 2016 Microelectron. Rel. 57 1
[18] Chang Y W, Cheng S, Dai L H, et al. 2017 J. Vac. Sci. Technol. B 35 020603
[19] EIA/JEDEC Standard 35-A 2001 Electronics Industries Association (Washington, DC)
[20] Zhang E X, Yu Z S, Cao Y G, et al. 2008 J. Vac. Sci. Technol. A 26 L1
[1] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[2] Influences of total ionizing dose on single event effect sensitivity in floating gate cells
Ya-Nan Yin(殷亚楠), Jie Liu(刘杰), Qing-Gang Ji(姬庆刚), Pei-Xiong Zhao(赵培雄), Tian-Qi Liu(刘天奇), Bing Ye(叶兵), Jie Luo(罗捷), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东). Chin. Phys. B, 2018, 27(8): 086103.
[3] Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation
Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选). Chin. Phys. B, 2018, 27(2): 028501.
[4] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[5] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[6] Direct measurement and analysis of total ionizing dose effect on 130 nm PD SOI SRAM cell static noise margin
Qiwen Zheng(郑齐文), Jiangwei Cui(崔江维), Mengxin Liu(刘梦新), Dandan Su(苏丹丹), Hang Zhou(周航), Teng Ma(马腾), Xuefeng Yu(余学峰), Wu Lu(陆妩), Qi Guo(郭旗), Fazhan Zhao(赵发展). Chin. Phys. B, 2017, 26(9): 096103.
[7] Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices
Yan Cui(崔岩), Ling Yang(杨玲), Teng Gao(高腾), Bo Li(李博), Jia-Jun Luo(罗家俊). Chin. Phys. B, 2017, 26(8): 087501.
[8] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[9] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[10] Comparison of radiation degradation induced by x-rayand 3-MeV protons in 65-nm CMOS transistors
Lili Ding(丁李利), Simone Gerardin, Marta Bagatin, Dario Bisello, Serena Mattiazzo, Alessandro Paccagnella. Chin. Phys. B, 2016, 25(9): 096110.
[11] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
[12] Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology
Pengcheng Huang(黄鹏程), Shuming Chen(陈书明), Jianjun Chen(陈建军). Chin. Phys. B, 2016, 25(3): 036103.
[13] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[14] Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦). Chin. Phys. B, 2016, 25(11): 118503.
[15] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai, Chen Jing, Luo Jie-Xin, He Wei-Wei, Huang Jian-Qiang, Chai Zhan, Wang Xi. Chin. Phys. B, 2015, 24(8): 088501.
No Suggested Reading articles found!