Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030505    DOI: 10.1088/1674-1056/27/3/030505
GENERAL Prev   Next  

Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space

Gang Fang(方钢)1,2,3, Nan Sheng(盛楠)1, Tan Jin(金坦)2, Yousheng Xu(许友生)4, Hai Sun(孙海)5, Jun Yao(姚军)5, Wei Zhuang(庄巍)2, Haiping Fang(方海平)1
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matters, Chinese Academy of Sciences, Fuzhou 350002, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 School of Light Industry, Zhejiang University of Science and Technology, Hangzhou 310023, China;
5 School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266555, China
Abstract  

Hydrophobic nanochannel plays a significant role in many physical, biological, and geological phenomena and exhibits impressive applications due to both its ubiquitous distribution and great ability to transport hydrophobic molecules, including various oils and gases. Based on theoretical modeling, we herein reveal that the amphipathic Janus nanoparticles have a large probability to self-assemble into uninterrupted hydrophobic nanochannels inside the aqueous nano-space, although there are large portions of the Janus nanoparticles to be hydrophilic. The key to this observation is the attractions between the hydrophobic regimes on neighboring amphipathic Janus particles through hydrophobic interaction in aqueous nano-space. More surprisingly, the permeation efficiency of hydrophobic molecules through the uninterrupted hydrophobic channel in Janus particles aggregate is even higher than that in the aggregate of hydrophobic particles. We note that the proposed amphipathic Janus particles can be transported to the appropriate positions by the water since the hydrophilic regimes still remain a strong particle-water interaction. We also note that most natural subsurface rocks are not completely hydrophobic or hydrophilic but have complex surfaces with inhomogeneous wetting property. Our work therefore provides a detailed molecular level understanding of the formation of underground strata as well as the new insight for constructing the artificial hydrophobic channels for various applications, such as the design of proppants to enhance the recovery of the unconventional oil/gas.

Keywords:  amphipathic Janus particle      self-assembly      uninterrupted hydrophobic channel      water blockage  
Received:  19 September 2017      Revised:  06 December 2017      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  05.60.-k (Transport processes)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
Fund: 

Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB10040304), the National Natural Science Foundation of China (Grant Nos. 51490654, 11290164, and U1262109), and the Key Research Program of Chinese Academy of Sciences (Grant No. KJZD-EW-M03).

Corresponding Authors:  Jun Yao, Wei Zhuang, Haiping Fang     E-mail:  yaojun@upc.edu.cn;wzhuang@fjirsm.ac.cn;fanghaiping@sinap.ac.cn

Cite this article: 

Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平) Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space 2018 Chin. Phys. B 27 030505

[1] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M and Dresselhaus M S 1999 Science 286 1127
[2] Comotti A, Bracco S, Distefano G and Sozzani P 2009 Chem. Commun. 0 284
[3] Xie Q, Xin F, Park H G and Duan C H 2016 Nanoscale 8 19527
[4] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y and Chen Y Y 2012 Chin. Phys. B 21 054703
[5] Gong X J and Fang H P 2008 Chin. Phys. B 17 2739
[6] Jiang C J, Lesbani A, Kawamoto R, Uchida S and Mizuno N 2006 J. Am. Chem. Soc. 128 14240
[7] Smirnov S N, Vlassiouk I V and Lavrik N V 2011 ACS Nano 5 7453
[8] Trick J L, Wallace E J, Bayley H and Sansom M S P 2014 ACS Nano 8 11268
[9] Wang S, Javadpour F and Feng Q H 2016 Fuel 181 741
[10] Chandler D 2005 Nature 437 640
[11] Sánchez-Iglesias A, Grzelczak M, Altantzis T, Goris B, Perez-Juste J, Bals S, Van T G, Donaldson J S H, Chmelka B F and Israelachvili J N 2012 ACS Nano 6 11059
[12] Guo P, Tu Y S, Yang J R, Wang C L, Sheng N and Fang H P 2015 Phys. Rev. Lett. 115 186101
[13] Deng L, Zhao Y R, Zhou P, Xu H and Wang Y T 2016 Chin. Phys. B 25 128704
[14] Wan R Z, Wang C L, Lei X L, Zhou G Q and Fang H P 2015 Phys. Rev. Lett. 115 195901
[15] Hanasaki I and Nakatani A 2006 J. Chem. Phys. 124 144708
[16] Xu C Y, Kang Y L, You Z J and Chen M J 2016 J. Nat. Gas Sci. Eng. 36 1208
[17] Shen Y H, Ge H K, Li C X, Yang X Y, Ren K, Yang Z H and Su S 2016 J. Nat. Gas Sci. Eng. 35 1121
[18] Iijima S 1991 Nature 354 56
[19] Hong E H, Lee K H, Oh S H and Park C G 2003 Adv. Funct. Mater. 13 961
[20] Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y and Yao Y G 2007 Nano Lett. 7 3603
[21] Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P and Provencio P N 1998 Science 282 1105
[22] Liu J, Shi G S, Guo P, Yang J R and Fang H P 2015 Phys. Rev. Lett. 115 164502
[23] Zhou Y H, Guo W and Jiang L 2014 Sci. China-Phys. Mech. Astron. 57 836
[24] Zhang Q L, Jiang W Z, Liu J, Miao R D and Sheng N 2013 Phys. Rev. Lett. 110 254501
[25] Lu H J, Nie X C, Wu F M, Zhou X Y, Kou J L, Xu Y S and Liu Y 2012 J. Chem. Phys. 136 174511
[26] Lu S, Yao Z H, Hao P F and Fu C S 2010 Sci. China-Phys. Mech. Astron. 53 1298
[27] Walther A and Müller A H E 2013 Chem. Rev. 113 5194
[28] Hu J, Zhou S X, Sun Y Y, Fang X S and Wu L M 2012 Chem. Soc. Rev. 41 4356
[29] Shah A A, Schultz B, Kohlstedt K L, Glotzer S C and Solomon M J 2013 Langmuir 29 4688
[30] Alexeev A, Uspal W E and Balazs A C 2008 ACS Nano 2 1117
[31] McConnell M D, Kraeutler M J, Yang S and Composto R J 2010 Nano Lett. 10 603
[32] Walther A, Hoffmann M and Müller A H E 2008 Angew. Chem. Int. Ed. 47 711
[33] Synytska A, Khanum R, Ionov L, Cherif C and Bellmann C 2011 ACS Appl. Mater. Inter. 3 1216
[34] Tu F Q and Lee D 2014 J. Am. Chem. Soc. 136 9999
[35] Binks B P and Fletcher P D I 2001 Langmuir 17 4708
[36] Glaser N, Adams D J, Böker A and Krausch G 2006 Langmuir 22 5227
[37] Park B J, Brugarolas T and Lee D 2011 Soft Matter 7 6413
[38] Chen X M, Dong W and Zhang X R 2010 Sci. China-Chem. 53 1853
[39] Fernández M S, Misko V R and Peeters F M 2014 Phys. Rev. E 89 022306
[40] Hess B, Kutzner C, van der S D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[41] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A 1995 J. Am. Chem. Soc. 117 5179
[42] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[43] Bai Q F, Perez-Sanchez H, Zhang Y, Shao Y H, Shi D F, Liu H X and Yao X J 2014 Phys. Chem. Chem. Phys. 16 15874
[44] Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. Int. Ed. 53 10190
[45] Li H B, Fang H P, Lin Z F, Xu S X and Chen S Y 2004 Phys. Rev. E 69 031919
[46] Chen J G, Wang C L, Wei N, Wan R Z and Gao Y 2016 Nanoscale 8 5676
[47] Wen B H, Qin Z R, Zhang C Y and Fang H P 2015 Europhys. Lett. 112 44002
[48] Hopkins P, Fortini A, Archer A J and Schmidt M 2010 J. Chem. Phys. 133 224505
[49] Lin B H, Meron M, Cui B X, Rice S A and Diamant H 2005 Phys. Rev. Lett. 94 216001
[50] Zeng X P, Wu J B, Li S B, Chau Y Y, He G H, Wen W J and Yang G Z 2014 Sci. China-Phys. Mech. Astron. 57 829
[1] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[5] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[6] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[7] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[8] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[9] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[10] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[11] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[12] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[13] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[14] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[15] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
No Suggested Reading articles found!