|
|
Photonic generation of RF and microwave signal with relative frequency instability of 10-15 |
Lu-Lu Yan(闫露露)1,2, Wen-Yu Zhao(赵文宇)1, Yan-Yan Zhang(张颜艳)1,2, Zhao-Yang Tai(邰朝阳)1,2, Pan Zhang(张攀)1, Bing-Jie Rao(饶冰洁)1, Kai Ning(宁凯)1,2, Xiao-Fei Zhang(张晓斐)1,2, Wen-Ge Guo(郭文阁)1,3, Shou-Gang Zhang(张首刚)1,2, Hai-Feng Jiang(姜海峰)1,2 |
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China;
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Science, Xi'an Shiyou University, Xi'an 710065, China |
|
|
Abstract We demonstrate the ultra-stable frequency sources aiming to improve the short-time instability of primary frequency standards. These sources are realized by using photonic generation approach, and composed of ultra-stable lasers, optical-frequency-combs, optical signal detecting parts, and synthesizers. Preliminary evaluation shows that the sources produce fixed-frequency at 9.54(/9.63) GHz, 10 MHz, and tunable-frequency around 9.192 GHz with relative frequency instability of 10-15 for short terms.
|
Received: 06 November 2017
Revised: 26 December 2017
Accepted manuscript online:
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
|
07.57.-c
|
(Infrared, submillimeter wave, microwave and radiowave instruments and equipment)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536217, 61127901, and 11775253) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015334). |
Corresponding Authors:
Hai-Feng Jiang
E-mail: haifeng.jiang@ntsc.ac.cn
|
Cite this article:
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰) Photonic generation of RF and microwave signal with relative frequency instability of 10-15 2018 Chin. Phys. B 27 030601
|
[1] |
Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
|
[2] |
Santarelli G, AudoinC, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
|
[3] |
Wang W Q 2006 Fluctuation and Noise Letters 6 297
|
[4] |
Calhoun M, Huang S and Tjoelker R L 2007 Proceedings of the IEEE 95 1931
|
[5] |
Valley G C 2007 Opt. Express 15 1955
|
[6] |
Doeleman S 2009 Frequency Standards and Metrology:Proceedings of the 7th Symposium (Singapore:World Scientific) p. 175
|
[7] |
Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
|
[8] |
Matei D G, Legero T, Hafner S, Grebing C, Weyrich R, Zhang W, Sonderhouse L, Robinson J M, Ye J, Riehle F and Sterr U 2017 Phys. Rev. Lett. 118 263202
|
[9] |
Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hansch T W 2000 Phys. Rev. Lett. 84 5102
|
[10] |
Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J and Russell P S 2000 Phys. Rev. Lett. 85 2264
|
[11] |
Ye J, Hall J L and Diddams S A 2000 Opt. Lett. 25 1675
|
[12] |
McFerran J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A and Hollberg L 2005 Electron. Lett. 41 11
|
[13] |
Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W and Diddams S A 2011 Nat. Photon. 5 425
|
[14] |
Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y and Diddams S A 2011 Opt. Lett. 36 3260
|
[15] |
Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y and Santarelli G 2009 Appl. Phys. Lett. 94 141105
|
[16] |
Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803
|
[17] |
Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G and Jiang H F 2017 Chin. Phys. Lett. 34 090602
|
[18] |
Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G and Jiang H F 2016 Opt. Lett. 41 5584
|
[19] |
Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. B 24 064209
|
[20] |
Yan L L, Zhang Y Y, Zhang L, Fan S T, Zhang X F, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. Lett. 32 104207
|
[21] |
Taylor J, Datta S, Hati A, Nelson C, Quinlan F, Joshi A and Diddams S 2011 IEEE Photonics Journal 3 140
|
[22] |
Jiang H, Taylor J, Quinlan F and Diddams S A 2011 IEEE Photonics Journal 3 1004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|