Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 094601    DOI: 10.1088/1674-1056/26/9/094601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal

Guan-Ting Liu(刘官厅)1, Li-Ying Yang(杨丽英)2
1 College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China;
2 College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract  By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.
Keywords:  quasicrystals      infinitely many dislocations      semi-infinite crack      interaction  
Received:  20 March 2017      Revised:  20 April 2017      Published:  05 September 2017
PACS:  46.05.+b (General theory of continuum mechanics of solids)  
  46.50.+a (Fracture mechanics, fatigue and cracks)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11462020, 11262017, and 11262012) and the Key Project of Inner Mongolia Normal University, China (Grant No. 2014ZD03).
Corresponding Authors:  Guan-Ting Liu     E-mail:  guantingliu@imnu.edu.cn

Cite this article: 

Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英) Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal 2017 Chin. Phys. B 26 094601

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Ding D H, Yang W G, Hu C Z and Wang R H 1993 Phys. Rev. B 48 7003
[3] Wang R H, Yang W G, Hu C Z, et al. 1997 J. Phys.: Condens. Matter 9 2411
[4] Liu G T, Fan T Y and Guo R P 2004 Int. J. Solid Struct. 41 3949
[5] Fan T Y 2011 Mathematical Theory of Elasticity of Quasicrystals and its Applications. (Science Press: Beijing and Springer-Verlag: Berlin Heidelberg)
[6] Li L H and Liu G T 2012 Phys. Lett. A 376 987
[7] Gao Y, Xu S P and Zhao B S 2007 Pramana J. Phys. 68 803
[8] Gao Y and Ricoeur 2011 A Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences 467 2622
[9] Ding D H, Wang R H, Yang W G, Hu H Z and Qin Y L 1995 Phil. Mag. Lett. 72 353
[10] Fan T Y, Li X F and Sun Y F 1999 Acta Phys. Sin. (Overseas Edn.) 8 288 (in Chinese)
[11] Li X F and Fan T Y 1999 Phys. Stat. B 212 19
[12] Edagawa K 2001 Mater. Sci. Eng. A 309-310 528
[13] Li L H 2013 Chin. Phys. B 22 016102
[14] Li L H 2013 Chin. Phys. B 22 116101
[15] Guo J H and Liu G T 2008 Appl. Math. Mech. 29 485
[16] Liu G T, Guo R P and Fan T Y 2003 Chin. Phys. 2 1149
[17] Guo J H, Yu J and Si R 2013 Appl. Math. Comp. 219 7445
[18] Guo J H, Yu J and Xing Y M 2013 Mech. Res. Commun. 52 40
[19] Guo J H and Lu Z X 2011 Appl. Math. Comp. 217 9397
[20] Jiang L J and Liu G T 2017 Chin. Phys. B 26 044601
[21] Li L H 2010 Chin. Phys. B 19 046101
[22] Li L H and Liu G T 2012 Acta Phys. Sin. 61 086103 (in Chinese)
[23] Li L H and Liu G T 2013 Phil. Mag. Lett. 93 142
[24] Liu X and Guo J H 2016 Theor. Appl. Fract. Mec. 86 225
[25] Muskhelishvili N I 1953 Singular Integral Equations Noordhoff, Groningen.
[26] Li X Y, Li P D, Wu T H, Shi M X and Zhu Z W 2014 Phys. Lett. A 378 826
[1] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[2] Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Ni q+ ( q= 11, 12, 14 , and 15) ions
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(1): 013101.
[3] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[5] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[6] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[7] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[8] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[9] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[10] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[11] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[12] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[13] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[14] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[15] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
No Suggested Reading articles found!