Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093105    DOI: 10.1088/1674-1056/26/9/093105
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Thermodynamic properties of ZnSe under pressure and with variation in temperature

Najm Ul Aarifeen, A Afaq
Center of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
Abstract  The thermodynamic properties of ZnSe are obtained by using quasi-harmonic Debye model embedded in Gibbs-code for pressure range 0-10 GPa and for temperature range 0-1000 K. Helmholtz free energy, internal energy, entropy, Debye temperature, and specific heat are calculated. The thermal expansion coefficient along with Grüneisen parameter are also calculated at room temperature for the pressure range. It is found that internal energy is pressure dependent at low temperature, whereas entropy and Helmholtz free energy are pressure sensitive at high temperature. At ambient conditions, the obtained results are found to be in close agreement to available theoretical and experimental data.
Keywords:  density functional theory      Helmholtz energy      Debye temperature      entropy  
Received:  15 March 2017      Revised:  06 May 2017      Accepted manuscript online: 
PACS:  31.15.E-  
  51.30.+i (Thermodynamic properties, equations of state)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  A Afaq     E-mail:  aafaq.cssp@pu.edu.pk

Cite this article: 

Najm Ul Aarifeen, A Afaq Thermodynamic properties of ZnSe under pressure and with variation in temperature 2017 Chin. Phys. B 26 093105

[1] Tanaka K 1989 Phys. Rev. B 39 1270
[2] Wenisch H, Schüll K, Hommel D, Landwehr G, Siche D, and Hartmann H 1996 Semicond. Sci. Tech. 11 107
[3] Li H and Jie W 2003 J. Cryst. Growth 257 110
[4] Sarkar B K, Verma A S, Sharma S, and Kundu S K 2014 Phys. Scripta 89 075704
[5] Lin C M, Chuu D S, Yang T J, Chou W C, Xu J, and Huang E 1997 Phys. Rev. B 55 13641
[6] Parashchuk T O, Freik N D, and Fochuk P M 2014 Phys. Mater. Chem. 2 14
[7] Yu Y, Han H L, Wan M J, Cai T, and Gao T 2009 Solid State Sci. 11 1343
[8] Wang H Y, Xu H, Cao J Y, and Li M J 2011 Int. J. Mod. Phys. B 25 4553
[9] Varshney D, Kaurav N, Sharma P, Shah S, and Singh R K 2004 Phase Transit. 77 1075
[10] Hamdi I, Aouissi M, Qteish A, and Meskini N 2006 Phys. Rev. B 73 174114
[11] Kusaba K and Kikegawa T 2002 J. Phys. Chem. Solids 63 651
[12] Okada H, Kawanaka T, and Ohmoto S 1996 J. Cryst. Growth 165 31
[13] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, and Luitz J 2001 ewblock WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria), ewblock Technical Report, ISBN 3-9501031-1-2
[14] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[15] Roza A O, Abbasi-Pérez D, and Luaña V 2011 Comput. Phys. Commun. 182 2232
[16] Francisco E, Recio J M, Blanco M A, Martín Pendás A, and Costales A 1998 J. Phys. Chem. A 102 1595
[17] Arora A K, Suh E K, Debska U, and Ramdas A K 1988 Phys. Rev. B 37 2927
[18] Berger L I and Pamplin B R ewblock Properties of Semiconductors, in Lide, D. R., ed., CRC Handbook of Chemistry and Physics, Volume 79
[19] Barin I 1995 ewblock Thermochemical Data of Pure Substances, 3rd edn. ewblock (Wiley-VCH)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[11] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[12] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[13] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
No Suggested Reading articles found!