Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087702    DOI: 10.1088/1674-1056/26/8/087702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synergistic effects of electrical and optical excitations on TiO2 resistive device

Qi Mao(毛奇)1,2, Wei-Jian Lin(林伟坚)1, Ke-Jian Zhu(朱科建)1, Yang Meng(孟洋)1,2, Hong-Wu Zhao(赵宏武)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The influences of electrical and optical excitations on the conductivity characteristic are investigated in bulk and edge devices of ITO/TiO2/ITO structure. Driven by the electrical and optical stimuli independently, the conductivity relaxation behaviors of the pristine resistive state (PRS) are observed and ascribed to the electron trapping and the oxygen transport processes. For a resistive switching (RS) device, the conductance change under optical illumination is about two orders of magnitude smaller than the conductance change corresponding to the variation of background current due to the emergence of a great number of oxygen vacancies in the RS device. With the illumination being off, the conductance slowly decays, which suggests that the oxygen diffusion process dominates the conductance relaxation. The difference in conductance relaxation between the bulk and edge devices indicates that the oxygen exchange plays a critical role in the relaxation process of conductivity. The synergistic effects of both electrical and optical excitations on the RS devices could be used for novel applications in integrated optoelectronic memory devices.

Keywords:  resistance switching      photoconductance      relaxation      oxygen vacancy  
Received:  24 March 2017      Revised:  18 April 2017      Published:  05 August 2017
PACS:  77.80.Fm (Switching phenomena)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: 

Project supported by the National Key Basic Research Project of China (Grant Nos. 2013CB921700 and 2016YFA0300600), the National Natural Science Foundation of China (Grant No. 11274375), and the Fund from Chinese Academy of Sciences (Grant No. KJCX2-YW-W24).

Corresponding Authors:  Qi Mao     E-mail:  maoqi2012@gmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武) Synergistic effects of electrical and optical excitations on TiO2 resistive device 2017 Chin. Phys. B 26 087702

[1] Dearnaley G, Stoneham A M and Morgan D V 1970 Rep. Prog. Phys. 33 1129
[2] Rozenberg M J, Inoue I H and Sánchez M J 2004 Phys. Rev. Lett. 92 178302
[3] Waser R and Aono M 2007 Nat. Mater. 6 833
[4] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[5] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[6] Bae Y C, Lee A R, Kwak J S, Im H, Do Y H and Hong J P 2011 Appl. Phys. A 102 1009
[7] Raghavan N, Pey K Let and Liu W H, Wu X, L X and Bosman M 2011 Microelectronic Engineering 88 1124
[8] Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[9] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R and Williams R S 2009 J. Appl. Phys. 106 074508
[10] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[11] Golego N, Studenikin S A and Cocivera M 2000 Phys. Rev. B 61 8262
[12] Zhu Q, Xie C S, Li H Y, Zhang J and Zeng D W 2015 Chem. Mater. 27 2861
[13] Luo J J, Adler A U, Mason T O, Buchholz D B, Chang R P H and Grayson M 2013 J. Appl. Phys. 113 153709
[14] Huo N J, Yang S X, Wei Z M and Li J B 2013 J. Mater. Chem. C 1 3999
[15] Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F and Hueso L E 2012 Adv. Mater. 24 2496
[16] Park J, Lee S and Yong K 2012 Nanotechnology 23 385707
[17] Retamal J R D, Kang C F, Ho C H, Ke J J, Chang W Y and He J H 2014 Appl. Phys. Lett. 105 253111
[18] Tan H W, Liu G, Zhu X J, Yang H L, Chen B, Chen X X, Shang J, Lu W D, Wu Y H and Li R W 2015 Adv. Mater. 27 2797
[19] Borkar H, Thakre A, Kushvaha S S, Aloysius R P and Kumar A 2015 RSC Adv. 5 35046
[20] Wei L, Li G Q and Zhang W F 2016 J. Phys. D: Appl. Phys. 49 045101
[21] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 Chin. Phys. B 19 037304
[22] Takeuchi M 1979 Phys. Stat. Sol. (a) 55 653
[23] Bansal N P and Doremus R H 1986 Handbook of Glass Properties (New York: Academic Press) p. 44
[24] Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
[25] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2008 Nat. Nanotechnol. 3 429
[26] Chang Y F, Ji L, Wang Y Z, Chen P Y, Zhou F, Xue F, Fowler B, Yu E T and Lee J C 2013 Appl. Phys. Lett. 103 193508
[27] Fowler B W, Chang Y F, Zhou Fei, Wang Y Z, Chen P Y, Xue F, Chen Y T, Bringhurst B, Pozder S and Lee J C 2015 RSC Adv. 5 21215
[28] Schulman A, Rozenberg M J and Acha C 2012 Phys. Rev. B 86 104426
[29] Chang T, Jo S H and Lu W 2011 ACS Nano 5 7669
[30] Das N, Tsui S, Xue Y Y, Wang Y Q and Chu C W 2009 Phys. Rev. B 80 115411
[31] Zhang H J, Zhang X P, Zhao Y G 2009 Chin. Phys. Lett. 26 077303
[32] Bieger T, Maier J and Waser R 1992 Sensors and Actuators B: Chemical 7 763
[33] Merkle R and Maier J 2008 Angew. Chem. Int. Ed. 47 3874
[34] Redfield and Bube R H 1996 Photo-induced Defects in Semiconductors (New York: Cambridge University Press) p. 66
[35] Kim J Y, Yu K M, Jeong S H, Yun E J and Bae B S 2014 Can. J. Phys. 92 611
[36] Moazzami K, Murphy T E, Phillips J D, Cheung M C K and Cartwright A N 2006 Semicond. Sci. Technol. 21 717
[37] Yang C Q, Zhu Q, Zhang S P, Zou Z J, Tian K and Xie C S 2014 Appl. Surf. Sci. 297 116
[38] Sakaguchik, Shimakawak K and Hatanaka Y 2006 Jpn. J. Appl. Phys. 45 4183
[39] Wu T H, Cheng I C, Hsu C C and Chen J Z 2015 J. Alloys Compd. 628 68
[40] Sharma P, Sreenivas K and Rao K V 2003 J. Appl. Phys. 93 3963
[41] Ahn S E, Lee J S, Kim H, Kim S, Kang B H, Kim K H and Kim G T 2004 Appl. Phys. Lett. 84 5022
[1] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[2] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[3] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[4] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[5] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[6] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[7] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[8] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[9] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[10] Structural and dielectric properties of giant dielectric Na1/2Sm1/2Cu3Ti4O12 ceramics prepared by reactive sintering methods
H Mahfoz Kotb. Chin. Phys. B, 2019, 28(9): 098202.
[11] Intrinsic transverse relaxation mechanisms of polarized alkali atoms enclosed in radio-frequency magnetometer cell
Yang-Ying Fu(傅杨颖), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(9): 098504.
[12] Measurement scheme to detect α relaxation time of glass-forming liquid
Xing-Yu Zhao(赵兴宇), Li-Na Wang(王丽娜), Hong-Mei Yin(尹红梅), Heng-Wei Zhou(周恒为), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(8): 086601.
[13] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[14] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[15] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
No Suggested Reading articles found!