Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074205    DOI: 10.1088/1674-1056/26/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum feedback cooling of two trapped ions

Shuo Zhang(张硕)1,3, Wei Wu(吴伟)2, Chun-Wang Wu(吴春旺)2, Feng-Guang Li(李风光)1, Tan Li(李坦)1, Xiang Wang(汪翔)1, Wan-Su Bao(鲍皖苏)1
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China;
2 College of Science, National University of Defense Technology, Changsha 410073, China;
3 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450004, China
Abstract  

We present a sub-Doppler cooling scheme of a two-trapped-ion crystal by quantum feedback control method. In the scheme, we obtain the motional information by continuously measuring the spontaneous emission photons from one single ion of the crystal, and then apply a feedback force to cool the whole chain down.We derive the cooling dynamics of the cooling scheme using quantum feedback theory and quantum regression theorem. The result shows that with experimentally achievable parameters, our scheme can achieve lower temperature and faster cooling rate than Doppler cooling.

Keywords:  laser cooling      trapped ion      quantum optics  
Received:  19 December 2016      Revised:  01 March 2017      Published:  05 July 2017
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11504430,61205108,and 11304387) and the National Key R&D Program of China (Grant No.2016YFA0301903).

Corresponding Authors:  Wei Wu, Chun-Wang Wu     E-mail:  weiwu@nudt.edu.cn;cwwu@nudt.edu.cn

Cite this article: 

Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏) Quantum feedback cooling of two trapped ions 2017 Chin. Phys. B 26 074205

[1] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[2] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[3] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[4] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
[5] Stenholm S 1986 Rev. Mod. Phys. 58 699
[6] Zhou F, Xie Y, Chen L, Wan W, Wu H Y and Feng M 2013 Chin. Phys. Lett. 30 033701
[7] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[8] Roos Ch, Zeiger Th, Rohde H, Nägerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713
[9] Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
[10] Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
[11] Zhang S, Wu C W and Chen P X 2012 Phys. Rev. A 85 053420
[12] Zhang J, Zhang S, Ou B Q, Wu W and Chen P X 2014 Chin. Phys. B 23 113701
[13] Lu Y, Zhang J Q, Cui J M, Cao D Y, Zhang S, Huang Y F, Li C F, and Guo G C 2015 Phys. Rev. A 92 023420
[14] Yi Z and Gu W J 2017 Opt. Express 25 1314
[15] Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
[16] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[17] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[18] Wiseman H M 1994 Phys. Rev. A 49 2133
[19] Steixner V, Rabl P and Zoller P 2005 Phys. Rev. A 72 043826
[20] Steixner V, Rabl P and Zoller P 2005 Phys. Rev. A 72 043823
[21] Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P and Zoller P 2006 Phys. Rev. Lett. 96 043003
[22] Jiang Z and Chen P X 2012 Acta Phys. Sin. 61 14209 (in Chinese)
[23] Glaetzle A W, Hammerer K, Daley A J, Blatt R and Zoller P 2010 Opt. Commun. 283 758
[24] James D 1998 Appl. Phys. B 66 181
[25] Cirac J I, Blatt R and Zoller P 1992 Phys. Rev. A 46 2668
[26] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[27] Olmschenk S, Matsukevich D N, Maunz P, Hayes D, Duan L M and Monroe C 2009 Science 323 486
[28] Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G and Wineland D J 2009 Nat. Phys. 5 551
[29] Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M and Leuchs G 2012 Phys. Rev. A 86 043431
[30] Shu G, Kurz N, Dietrich M R and Blinov B B 2010 Phys. Rev. A 81 042321
[31] Nägerl H C, Leibfried D, Rohde H, Thalhammer G, Eschner J, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. A 60 145
[1] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[4] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[5] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[6] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[7] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[8] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[9] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[10] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[11] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[12] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[13] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[14] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[15] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
No Suggested Reading articles found!