Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068803    DOI: 10.1088/1674-1056/26/6/068803

O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells

En-Dong Jia(贾恩东)1,2, Xi Lou(娄茜)1,3, Chun-Lan Zhou(周春兰)1,2, Wei-Chang Hao(郝维昌)3, Wen-Jing Wang(王文静)1,2
1 The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences(UCAS), Beijing 100049, China;
3 Department of Physics and Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Beihang University, Beijing 100191, China
Abstract  We demonstrate a simple and fast post-deposition treatment with high process compatibility on the hole transport material (HTM) Spiro-MeOTAD in vapor-assisted solution processed methylammonium lead triiodide (CH3NH3PbI3)-based solar cells. The prepared Co-doped p-type Spiro-MeOTAD films are treated by O3 at room temperature for 5 min, 10 min, and 20 min, respectively, prior to the deposition of the metal electrodes. Compared with the traditional oxidation of Spiro-MeOTAD films overnight in dry air, our fast O3 treatment of HTM at room temperature only needs just 10 min, and a relative 40.3% increment in the power conversion efficiency is observed with respect to the result of without-treated perovskite solar cells. This improvement of efficiency is mainly attributed to the obvious increase of the fill factor and short-circuit current density, despite a slight decrease in the open-circuit voltage. Ultraviolet photoelectron spectroscopy (UPS) and Hall effect measurement method are employed in our study to determine the changes of properties after O3 treatment in HTM. It is found that after the HTM is exposed to O3, its p-type doping level is enhanced. The enhancement of conductivity and Hall mobility of the film, resulting from the improvement in p-doping level of HTM, leads to better performances of perovskite solar cells. Best power conversion efficiencies (PCEs) of 13.05% and 16.39% are achieved with most properly optimized HTM via CH3NH3I vapor-assisted method and traditional single-step method respectively.
Keywords:  perovskite solar cells      Spiro-MeOTAD      simple      O3 treatment     
Received:  19 December 2016      Published:  05 June 2017
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472016 and 51272015).
Corresponding Authors:  Chun-Lan Zhou, Wei-Chang Hao     E-mail:;

Cite this article: 

En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静) O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells 2017 Chin. Phys. B 26 068803

[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
[2] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[3] Kim H S, Im S H and Park N G 2014 J. Phys. Chem. C 118 5615
[4] Boix P P, Nonomura K, Mathews N and Mhaisalkar S G 2014 Mater. Today 17 16
[5] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[6] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[7] Mitzi D B 1999 Progress in Inorganic Chemistry, Vol. 48, Karlin K D ed. (New York: John Wiley & Sons Inc.) pp. 1-121
[8] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Hertz L M, Petrozza A and Snaith H J 2013 Science 342 341
[9] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[10] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[11] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 pp. 9019-9038
[12] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[13] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S 2015 Science 348 1234
[14] Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W Q, Islam A, Bi E B and Ye F 2014 Appl. Phys. Express 7 052301
[15] Ball J M, Lee M M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739
[16] Im J H, Jang I H, Pellet N, Gratzel M and Park N G 2014 Nat. Nanotechnol. 9 927
[17] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J and Gupta G 2015 Science 347 522
[18] Abu Laban W and Etgar L 2013 Energy Environ. Sci. 6 3249
[19] Liu D, Yang J and Kelly T L 2014 J. Am. Chem. Soc. 136 17116
[20] Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F and Mora-Sero I 2014 Nano. Lett. 14 888
[21] Sum T C and Mathews N 2014 Energy Environ. Sci. 7 2518
[22] Zhang H, Shi Y T, Yan F, Wang L, Wang K, Xing Y J, Donga Q S and Ma T L 2014 Chem. Commun. 50 5020
[23] Schölin R, Karlsson M H, Eriksson S K, Siegbahn H, Johansson E M J and Rensmo H 2012 J. Phys. Chem. C 116 26300
[24] Ren Z W, Ng A, Shen Q, Gokkaya H C, Wang J, Yang L J, Yiu W K, Bai G X, Djurisic A B and Leung W W F 2014 Sci. Rep. 4 6752
[25] Chen H W, Sakai N, Ikegami M and Miyasaka T 2015 J. Phys. Chem. Lett. 6 164
[26] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G and Yang Y 2014 J. Am. Chem. Soc. 136 622
[27] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[28] Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
[29] Cappel U B, Daeneke T and Bach U 2012 Nano. Lett. 12 4925
[30] Leijtens T, Lim J, Teuscher J, Park T and Snaith H J 2013 Adv. Mater. 25 3227
[31] Servaites J D, Yeganeh S, Marks T J and Ratner M A 2010 Adv. Funct. Mater. 20 97
[32] Wang T Y, Cheng J W, Wu G X and Li M C 2016 Sci. China-Mater. 59 703
[33] Song D D, Cui P, Wang T Y, Wei D, Li M C, Cao F H, Yue X P, Fu P F, Li Y Y and He Y 2015 J. Phys. Chem. C 119 22812
[34] Song D D, Wei D, Cui P, Li M, Duan Z Q, Wang T Y, Ji J, Li Y Y, Jbengue J M, Li Y F, He Y, Trevor M and Park N G 2016 J. Mater. Chem. A 4 6091
[35] Zhang Z R, Yue X P, Wei D, Li M C, Fu P F, Xie B X, Song D D and Li Y F 2015 RSC Adv. 5 104606
[36] Wei D, Ji J, Song D D, Li M C, Cui P, Li Y Y, Mbengue J M, Zhou W J, Ning Z J and Park N G 2017 J. Mater. Chem. A 5 1406
[37] Cui P, Fu P F, Wei D, Li M C, Song D D, Yue X P, Li Y Y, Zhang Z R, Li Y F and Mbengue J M 2015 RSC Adv. 5 75622
[1] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[2] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[3] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[4] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[5] Molecular-dynamics investigation of the simple droplet critical wetting behavior at a stripe pillar edge defect
Xiaolong Liu(刘小龙), Chengyun Hong(洪成允), Yong Ding(丁勇), Xuepeng Liu(刘雪朋), Jianxi Yao(姚建曦), Songyuan Dai(戴松元). Chin. Phys. B, 2019, 28(1): 014703.
[6] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[7] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[8] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[9] Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华). Chin. Phys. B, 2017, 26(5): 058401.
[10] Simulation design of P-I-N-type all-perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Yi-Fan Gu(顾一帆). Chin. Phys. B, 2017, 26(2): 028803.
[11] Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps
Chao Xia(夏超), Wei-Dong Song(宋伟东), Chong-Zhen Zhang(张崇臻), Song-Yang Yuan(袁松洋), Wen-Xiao Hu(胡文晓), Ping Qin(秦萍), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Xing-Fu Wang(王幸福), Miao He(何苗), Shu-Ti Li(李述体). Chin. Phys. B, 2017, 26(1): 018401.
[12] Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer
Jian-Feng Li(李建丰), Chuang Zhao(赵创), Heng Zhang(张恒), Jun-Feng Tong(同军锋), Peng Zhang(张鹏), Chun-Yan Yang(杨春燕), Yang-Jun Xia(夏养君), Duo-Wang Fan(范多旺). Chin. Phys. B, 2016, 25(2): 028402.
[13] Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first-principles study
Qing-Yuan Chen(陈清源), Yang Huang(黄杨), Peng-Ru Huang(黄鹏儒) Tai Ma(马泰), Chao Cao(曹超), Yao He(何垚). Chin. Phys. B, 2016, 25(2): 027104.
[14] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[15] Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes
Hao Yun-Qi, Ye Qing, Pan Zheng-Qing, Cai Hai-Wen, Qu Rong-Hui. Chin. Phys. B, 2014, 23(11): 110703.
No Suggested Reading articles found!