Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 048101    DOI: 10.1088/1674-1056/26/4/048101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication of crystalline selenium microwire

Shuai Peng(彭帅)1,2,3, Guo-Wu Tang(唐国武)1,2,3, Min Sun(孙敏)1,2,3, Wang-Wang Liu(刘旺旺)1,2,3, Xiu-Jie Shan(单秀杰)1,2,3, Qi Qian(钱奇)1,2,3, Dong-Dan Chen(陈东丹)1,2,3, Qin-Yuan Zhang(张勤远)1,2,3, Zhong-Min Yang(杨中民)1,2,3
1 State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China;
2 Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510640, China;
3 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
Abstract  A method of fabricating selenium (Se) microwire is demonstrated. A multimaterial fiber with amorphous selenium (a-Se) core and multicomponent phosphate glass cladding is drawn by using a conventional optical fiber drawing technique. Then the a-Se core of the fiber is crystallized by a post thermal process at 150℃. After the multicomponent phosphate glass cladding is stripped from the multimaterial fiber by marinating the fiber in HF acid solution, a crystalline selenium (c-Se) microwire with high uniformity and smooth surface is obtained. Based on microstructure measurements, the c-Se microwire is identified to consist of most hexagonal state particles and very few trigonal state whiskers. The good photoconduction property of c-Se microwire with high quality and longer continuous length makes it possible to apply to functional devices and arrays.
Keywords:  selenium semiconductor      crystalline microwires      optical fiber technology      photoconductivity materials  
Received:  25 November 2016      Revised:  13 December 2016      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  61.82.Fk (Semiconductors)  
  72.40.+w (Photoconduction and photovoltaic effects)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scientists, China (Grant No. 61325024), the High-Level Personnel Special Support Program of Guangdong Province, China (Grant No. 2014TX01C087), the Fundamental Research Funds for the Central Universities, China (Grant No. 2015ZP019), the National High Technology and Development Program of China (Grant Nos. 2013AA031502 and 2014AA041902), the National Natural Science Foundation of China (Grant Nos. 51472088, 61535014, and 51302086), and the Fund of Guangdong Provincial Cooperation of Producing, Studying and Researching, China (Grant No. 2012B091100140).
Corresponding Authors:  Qi Qian     E-mail:  qianqi@scut.edu.cn

Cite this article: 

Shuai Peng(彭帅), Guo-Wu Tang(唐国武), Min Sun(孙敏), Wang-Wang Liu(刘旺旺), Xiu-Jie Shan(单秀杰), Qi Qian(钱奇), Dong-Dan Chen(陈东丹), Qin-Yuan Zhang(张勤远), Zhong-Min Yang(杨中民) Fabrication of crystalline selenium microwire 2017 Chin. Phys. B 26 048101

[1] Lieber W L and Charles M 2007 Semicond. Nanowires 38 R387
[2] Cui Y, Zhong Z, Wang D, Wang W U and Lieber C M 2003 Nano Lett. 3 149
[3] Lu W and Lieber C M 2007 Nat. Mater. 6 841
[4] Eymery J, Feiner L F, Forchel A, et al. 2006 Mater. Today 9 28
[5] Dickey E C, Clark T E, Zhang X and Redwing J M 2008 Micros. Microanal. 14 6
[6] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[7] Wang F, Dong A, Sun J, Tang R, Yu H and Buhro W E 2006 Inorg. Chem. 45 7511
[8] Chen H, Shin D W, Nam J G, Kwon K W and Yoo J B 2010 Mater. Res. Bull. 45 699
[9] Deng D, Orf N, Danto S, Abouraddy A, Joannopoulos J and Fink Y 2010 Appl. Phys. Lett. 96 023102
[10] Baril N F, He R, Day T D, Sparks J R, Keshavarzi B, Krishnamurthi M, Borhan A, Gopalan V, Peacock A C and Healy N 2012 J. Am. Chem. Soc. 134 19
[11] Ma Y, Qi L, Ma J, et al. 2003 Langmuir 19 9079
[12] Xia Y, Yang P, Sun Y, et al. 2003 Adv. Mater. 15 353
[13] Kasap S O and Rowlands J A 2002 P IEEE 90 591
[14] Yaman M, Khudiyev T, Ozgur E, et al. 2011 Nat. Mater. 10 494
[15] Cooper W and Westbury R 1974 Angewandte Chemie 87 681
[16] Xu S, Yang Z, Liu T, Zhang W, Feng Z, Zhang Q and Jiang Z 2010 Opt. Express 18 1249
[17] Noel H, Laura L, Sparks J R, Stuart B, Sazio P J A, Badding J V and Peacock A C 2011 Opt. Lett. 36 2480
[18] Morris S, Hawkins T, Foy P, Hudson J, Zhu L, Stolen R, Rice R and Ballato J 2012 Opt. Mater. Express 2 1511
[19] Gates B, Mayers B, Cattle B and Xia Y 2002 Adv. Funct. Mater. 12 219
[20] Tang G, Qian Q, Peng K, Wen X, Zhou G, Sun M, Chen X and Yang Z 2015 AIP Adv. 5 027113
[21] Tang G, Qian Q, Wen X, Chen X, Liu W, Sun M and Yang Z 2015 Opt. Express 23 23624
[22] Menke E, Thompson M, Xiang C, Yang L and Penner R 2006 Nat. Mater. 5 914
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[3] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[4] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[5] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[6] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[7] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[8] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[11] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[12] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[13] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[14] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[15] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
No Suggested Reading articles found!