Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023401    DOI: 10.1088/1674-1056/26/2/023401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optical potential approach for positron scattering by metastable 23S state of helium

Xi-Gang Wu(吴锡刚)1, Yong-Jun Cheng(程勇军)2, Fang Liu(刘芳)3, Ya-Jun Zhou(周雅君)2
1 Academy of Physical Science and Technology and School of Applied Foreign Languages, Heilongjiang University, Harbin 150080, China;
2 Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China;
3 Department of Material Physics, Harbin University of Science and Technology, Harbin 150080, China
Abstract  

The momentum space coupled channels optical (CCO) method for positron scattering has been extended to study the scattering of positrons by metastable helium for impact energies in the range from the positronium threshold up to high energies. Both the positronium formation and ionization continuum channels are included in the calculations via a complex equivalent local potential. The positronium formation, ionization, elastic and 23S-23P excitation, and total scattering cross sections are all presented and compared with the available information.

Keywords:  positron      excited      helium      positronium formation  
Received:  26 September 2016      Revised:  31 October 2016      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.80.Uv (Positron scattering)  
  34.80.Lx (Recombination, attachment, and positronium formation)  
Fund: 

Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. 12541160).

Corresponding Authors:  Yong-Jun Cheng     E-mail:  yongjun.cheng@hit.edu.cn

Cite this article: 

Xi-Gang Wu(吴锡刚), Yong-Jun Cheng(程勇军), Fang Liu(刘芳), Ya-Jun Zhou(周雅君) Optical potential approach for positron scattering by metastable 23S state of helium 2017 Chin. Phys. B 26 023401

[1] Surko C M, Gribakin G F and Buckman S J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R57
[2] Utamuratov R, Kadyrov A S, Fursa D V, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 042705
[3] Christophorou L G and Olthoff J K 2001 Adv. At. Mol. Opt. Phys. 44 155
[4] Uhlmann L J, Dall R G, Truscoff A G, Hoogerland M D, Beldwin K G H and Buckman S J 2005 Phys. Rev. Lett. 94 173201
[5] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[6] Nan G, Zhou Y and Ke Y 2004 Chin. Phys. Lett. 21 2406
[7] Kothari H N and Joshipura K N 2010 Chin. Phys. B 19 103402
[8] Mandal P, Guha S and Sil N C 1979 J. Phys. B: At. Mol. Phys. 12 2913
[9] Igarashi A and Toshima N 1992 Phys. Lett. A 164 70
[10] Schultz D R and Olson R E 1988 Phys. Rev. A 38 1866
[11] Champell C P, McAlinden M T, Kernoghan A A and Walters H R J 1998 Nucl. Instrum. Phys. Res. B 143 41
[12] Hewitt R N, Noble C P and Bransden B H 1992 J. Phys. B: At. Mol. Opt. Phys. 25 557
[13] Mitroy J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L263
[14] Kodysov A S and Bray Igor 2002 Phys. Rev. A 66 012710
[15] Hanssen J, Hervieux P A, Fojon F A and Rivarola R D 2000 Phys. Rev. A 63 012705
[16] Bartschat K 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L527
[17] Gribakin F and Ludlow J 2004 Phys. Rev. A 70 032720
[18] Cheng Y and Zhou Y 2007 Phys. Rev. A 76 012704
[19] McCarthy I E and Stelbovics A T 1980 Phys. Rev. A 22 502
[20] McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 4597
[21] Cheshire I M 1964 Proc. Phys. Soc. 83 227
[22] Mitroy J, Bromley M W J and Ryzhikh G G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R81
[23] Dzuba Y A, Flanbaum V V, Gribakin G F and King W A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3151
[24] Rienzi J D and Drachman R J 2006 Phys. Rev. A 73 012703
[25] Wilson W G and Williams W L 1976 J. Phys. B: At. Mol. Phys. 9 423
[26] Neynaber R H, Trujillo S M, Marino L Land Rothe E W 1964 Atomic Collision Processes: Proceedings of the Third International Conference on the Physics of Electronic and Atomic Collisions, July 22-26, 1963
[27] Fursa D and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 757
[28] Wang Y C, Zhou Y, Cheng Y, Ratnavelu K and Ma J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045201
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[3] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[4] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[5] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[6] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[7] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[8] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[9] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[10] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[11] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[12] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[13] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[14] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!