Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020302    DOI: 10.1088/1674-1056/26/2/020302
GENERAL Prev   Next  

Optimal multi-photon entanglement concentration with the photonic Faraday rotation

Lan Zhou(周澜)1,2, Dan-Dan Wang(王丹丹)3, Xing-Fu Wang(王兴福)1, Shi-Pu Gu(顾世浦)3, Yu-Bo Sheng(盛宇波)2,4
1 College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We put forward an optimal entanglement concentration protocol (ECP) for recovering an arbitrary less-entangled multi-photon Greenberger-Horne-Zeilinger (GHZ) state into the maximally entangled GHZ state based on the photonic Faraday rotation in low-quality (Q) cavity. In the ECP, only one pair of less-entangled multi-photon GHZ state and one auxiliary photon are required, and the concentration task can be realized by local operations. Moreover, our ECP can be used repeatedly to further concentrate the discarded items of conventional ECPs, which can increase its success probability largely. Under the practical imperfect detection condition, our protocol can still work with relatively high success probability. This ECP has application potential in current and future quantum communication.
Keywords:  quantum communication      entanglement concentration      photonic Faraday rotation      low-Q cavity     
Received:  30 August 2016      Published:  05 February 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project of Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波) Optimal multi-photon entanglement concentration with the photonic Faraday rotation 2017 Chin. Phys. B 26 020302

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Wang M Y and Yan F L 2016 Quantum Inform. Process. 15 3383
[4] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[6] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[7] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[8] Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
[9] Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
[10] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[11] Li T and Deng F G 2015 Sci. Rep. 5 15610
[12] Ekert A K 1991 Phys. Rev. Lett. 67 661
[13] Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
[14] Chang Y, Zhang S B, Yan L L and Han G H 2015 Chin. Phys. B 24 080306
[15] Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 Chin. Phys. B 23 050306
[16] Wu H Z and Yang Z B 2014 Chin. Phys. Lett. 31 024206
[17] Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303
[18] Ai Q 2016 Sci. Bull. 61 110
[19] Wu Y L, Li S J, Ge W, Xu Z X, Tian L and Wang H 2016 Sci. Bull. 61 302
[20] He Y Q, Ding D, Yan F L and Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501
[21] He Y Q, Ding D, Yan F L and Gao T 2016 Sci. Rep. 6 19116
[22] He Y Q, Ding D, Yan F L and Gao T 2015 Opt. Express 23 21671
[23] Su X L, Jia X J, Xie C D and Peng K C 2014 Sci. China-Phys. Mech. Astron. 57 1210
[24] Ding D, Yan F L and Gao T 2014 Sci. China-Phys. Mech. Astron. 57 2098
[25] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[26] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[27] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[28] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[29] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[30] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[31] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[32] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[33] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[34] Deng F G 2012 Phys. Rev. A 85 022311
[35] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[36] Sheng Y B and Zhou L 2013 Entropy 15 1776
[37] Sheng Y B, Liu J, Zhao S Y, Wang L and Zhou L 2014 Chin. Phys. B 23 080305
[38] Wang G Y, Li T and Deng F G 2015 Quantum Inform. Process. 14 1305
[39] Cao C, Ding H, Li Y, Wang T J, Mi S C, Zhang R and Wang C 2015 Quantum Inform. Process. 14 1265
[40] Wang C, Cao C, He L Y and Zhang C L 2014 Quantum Inform. Process. 13 1025
[41] Sheng Y B and Zhou L 2013 Chin. Phys. B 22 110303
[42] Zhou L 2014 Chin. Phys. B 23 050308
[43] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[44] Zhou L, Sheng Y B and Wang X F 2014 J. Opt. Soc. Am. B 31 503
[45] Liu J, Zhao S Y, Zhou L and Sheng Y B 2014 Chin. Phys. B 23 020313
[46] Zhou L and Sheng Y B 2016 Chin. Phys. B 25 020308
[47] Wang C, Shen W W, Mi S C, Zhang Y and Wang T J 2015 Sci. Bull. 60 2016
[48] Maimaiti W, Li Z, Chesi S and Wang Y D 2015 Sci. China-Phys. Mech. Astron. 58 050309
[49] Sheng Y B, Feng Z F, Ou-Yang Y, Qu C C and Zhou L 2014 Chin. Phys. Lett. 31 050303
[50] Liang B B, Hu S, Cui W X, An C S, Xing Y, Hu J S, Sun G Q, Jiang X X and Wang H F 2014 Laser Phys. Lett. 11 115202
[51] Shukla C, Banerjee A and Pathak A 2015 Quantum Inform. Process. 14 2077
[52] Fan L L, Xia Y and Song J 2014 Quantum Inform. Process. 13 1967
[53] Qu C C, Zhou L and Sheng Y B 2015 Quantum Inform. Process. 14 4131
[54] Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China-Phys. Mech. Astron. 58 060301
[55] Pan J, Zhou L, Gu S P, Wang X F, Sheng Y B and Wang Q 2016 Quantum Inform. Process. 15 1669
[56] Zhou L, Wang X F and Sheng Y B 2014 Int. J. Theor. Phys. 53 1752
[57] Wang M Y, Yan F L and Xu J Z 2016 J. Phys. B: At. Mol. Opt. Phys. 49 155502
[58] Cao C, Wang T J, Zhang R and Wang C 2015 Laser Phys. Lett. 12 036001
[59] Cao C, Wang T J, Zhang R and Wang C 2015 J. Opt. Soc. Am. B 32 1524
[60] Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J and Wang C 2016 Sci. China-Phys. Mech. Astron. 59 100315
[61] Du F F and Deng F G 2015 Sci. China-Phys. Mech. Astron. 58 040303
[62] Li X H and Ghose S 2014 Laser Phys. Lett. 11 125201
[63] Li X H and Ghose S 2015 Phys. Rev. A 91 062302
[64] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[65] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
[66] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
[67] Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[68] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[69] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[70] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[71] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C 2004 Phys. Rev. A 70 042314
[72] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[73] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
[74] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323
[75] Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
[76] Wei H, Deng Z J, Zhang X L and Feng M 2007 Phys. Rev. A 76 054304
[77] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
[78] Zhou L and Sheng Y B 2015 Phys. Rev. A 92 042314
[79] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K I and Kimble H J 2008 Science 319 1062
[80] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[81] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[82] McCall S L and Hahn E L 1967 Phys. Rev. Lett. 18 908
[83] Patel C K N and Slusher R E 1967 Phys. Rev. Lett. 19 1019
[84] Courtens E 1968 Phys. Rev. Lett. 21 3
[85] Labeyrie G, Miniatura C and Kaiserm R 2001 Phys. Rev. A 64 033402
[86] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[87] Bastos W P, Cardoso W B, Avelar A T, de Almeida N G and Baseia B 2012 Quantum Inform. Process. 11 1867
[88] Chen J J, An J H, Feng M and Liu G 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095505
[89] Heine D, Rohringer W, Fischer D, Wilzbach M, Raub T, Loziczky S, Yuan L X, Groth S, Hessmo B and Schmiedmayer J 2010 New J. Phys. 12 095005
[90] D'uria V, Lee N, Amri T, Fabre C and Laurat J 2011 Phys. Rev. Lett. 107 050504
[91] Henrich D, Rehm L, Dörner S, Hofherr M, Ilin K, Semenov A and Siegel M 2013 IEEE Trans. Appl. Supercond. 23 2200405
[92] Lita A E, Miller A J and Nam S W 2008 Opt. Express 16 3032
[1] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[2] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[3] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[4] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[5] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[6] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[7] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[8] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[9] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[10] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[11] Quantum frequency doubling based on tripartite entanglement with cavities
Juan Guo(郭娟), Zhi-Feng Wei(魏志峰), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(2): 020302.
[12] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[13] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
[14] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao, Liu Jian-Wei, Chen Xiu-Bo, Bi Ya-Gang, Shang Tao. Chin. Phys. B, 2015, 24(4): 040304.
[15] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na, Quan Dong-Xiao, Pei Chang-Xing, Yang-Hong. Chin. Phys. B, 2015, 24(2): 020304.
No Suggested Reading articles found!