Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104204    DOI: 10.1088/1674-1056/26/10/104204

Reflective ghost imaging free from vibrating detectors

Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉)
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Abstract  The vibration is one of the important factors affecting imaging quality of conventional remote sensing imaging because the relative motion between the imaging system and the target can result in the degradation of imaging quality. The influence of the vibration of the detector in the test path on reflective ghost imaging (RGI) is investigated theoretically and experimentally. We analyze the effects of the vibrating amplitude and velocity. The results demonstrate that the microvibrations of the bucket detector have almost no impact on the imaging resolution and signal-to-noise ratio (SNR) of RGI, i.e., the degradation of imaging quality caused by the vibration of the detector can be overcome to some extent. Our results can be helpful for remote sensing imaging.
Keywords:  reflective ghost imaging      vibration      remote sensing  
Received:  05 April 2017      Revised:  24 May 2017      Published:  05 October 2017
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Wb (Image reconstruction; tomography)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372102 and 61571183).
Corresponding Authors:  Yan-feng Bai     E-mail:

Cite this article: 

Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉) Reflective ghost imaging free from vibrating detectors 2017 Chin. Phys. B 26 104204

[1] Rav-Acha A and Peleg S 2005 Pattern. Recogn. Lett. 26 311
[2] Lokhande R, Arya K and Gupta P 2006 Proceedings of the 2006 ACM symposium on Applied computing, April 23-27, 2006, Dijon, France, p. 301
[3] Shan Q, Jia J and Agarwala A 2008 ACM SIGGRAPH 2008 papers, August 11-15, 2008, Los Angeles, California, p. 73
[4] Klyshko D 1988 Sov. Phys. Usp. 31 74
[5] Pittman T, Shih Y, Strekalov D and Sergienko A 1995 Phys. Rev. A 52 R3429
[6] Abouraddy A F, Saleh B E, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[7] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[8] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[9] Wang K G and Cao D Z 2004 Phys. Rev. A 70 041801
[10] Cao D Z, Xu B L, Zhang S H and Wang K G 2005 Opt. Lett. 30 2354
[11] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[12] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
[13] Scarcelli G, Berardi V and Shih Y H 2006 Appl. Phys. Lett. 88 061106
[14] Cheng J 2009 Opt. Express 17 7916
[15] Gong W L and Han S S 2011 Opt. Express 36 394
[16] Turiaci G J, Varga J J M and Iemmi C 2013 Optik-International Journal for Light and Electron Optics 124 6212
[17] Meyers R E, Deacon K S and Shih Y H 2007 J. Mod. Opt. 54 2381
[18] Shapiro J H 2016 Opt. Express 24 14172
[19] Phillips D B, He R, Chen Q, Gibson G M and Padgett M J 2016 Opt. Express 24 14172
[20] Erkmen B I 2012 J. Opt. Soc. Am. A 29 782
[21] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
[22] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D and Han S S 2016 Sci. Rep. 6 26133
[23] Yang X, Zhang Y, Xu L, Yang C H, Wang Q, Liu Y H and Zhao Y 2015 Chin. Phys. B 24 124202
[24] Duan D Y, Zhang L, Du S J and Xia Y J 2015 Chin. Phys. B 24 104203
[25] Li H, Xiong J and Zeng G H 2011 Opt. Eng. 50 127005
[26] Li E R, Bo Z W, Chen M L, Gong W L and Han S S 2014 Appl. Phys. Lett. 104 251120
[27] Zhang C, Gong W L and Han S S 2013 Appl. Phys. Lett. 102 021111
[28] Li X H, Deng C J, Chen M L, Gong W L and Han S S 2015 Photon. Res. 3 153
[29] Gao Y, Bai Y F and Fu X Q 2016 Opt. Express 24 25856
[30] Zeng X, Bai Y F, Shi X H, Gao Y and Fu X Q 2017 Opt. Commun. 382 415
[31] Basano L and Ottonello P 2010 Opt. Commun. 283 2657
[32] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[33] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[34] Gong W L 2016 J. Optics-UK 18 085702
[35] Nan S Q, Bai Y F, Shi X H, Shen Q, Li H X, Qu L J and Fu X Q 2016 IEEE P. J. 9 7500107
[36] Song S C, Sun M J and Wu L A 2016 Opt. Commun. 366 8
[1] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[2] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[3] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[4] Michelson laser interferometer-based vibration noise contribution measurement method for cold atom interferometry gravimeter
Ning Zhang(张宁), Qingqing Hu(胡青青), Qian Wang(王倩), Qingchen Ji(姬清晨), Weijing Zhao(赵伟靖), Rong Wei(魏荣), Yuzhu Wang(王育竹). Chin. Phys. B, 2020, 29(7): 070601.
[5] Vibrational effects on electron momentum distributionsof outer valence orbitals of benzene
Yu Zhang(张钰), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yichun Wang(王忆纯), Xu Shan(单旭), Xiangjun Chen(陈向军). Chin. Phys. B, 2020, 29(2): 023402.
[6] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[7] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[8] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[9] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[10] Acquisition performance analysis for intersatellite optical communications with vibration influence
Jing Ma(马晶), Gaoyuan Lu(陆高原), Siyuan Yu(于思源), Liying Tan(谭立英), Yulong Fu(付玉龙), Fajun Li(黎发军). Chin. Phys. B, 2020, 29(1): 014205.
[11] Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods
Aixing Wang(王爱星), Lifeng Sun(孙立风), Chao Fang(房超), Yibao Liu(刘义保). Chin. Phys. B, 2020, 29(1): 013101.
[12] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[13] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[14] Accurate all-electron calculation on the vibrational and rotational spectra of ground states for O2 and its ions
Qiao-Xia Wang(王巧霞), Yu-Min Wang(王玉敏), Ri Ma(马日), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(7): 073101.
[15] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
No Suggested Reading articles found!