Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016602    DOI: 10.1088/1674-1056/26/1/016602
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tuning the thermal conductivity of strontium titanate through annealing treatments

Liang Zhang(张喨)1, Ning Li(李宁)1, Hui-Qiong Wang(王惠琼)1,3, Yufeng Zhang(张宇锋)1, Fei Ren(任飞)1, Xia-Xia Liao(廖霞霞)1, Ya-Ping Li(李亚平)1, Xiao-Dan Wang(王小丹)1, Zheng Huang(黄政)1, Yang Dai(戴扬)4, Hao Yan(鄢浩)4, Jin-Cheng Zheng(郑金成)1,2,3
1. Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China;
2. Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen 361005, China;
3. Xiamen University Malaysia, Sepang, Selangor 439000, Malaysia;
4. Department of Chemical Engineering,~School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Abstract  Strontium titanate (SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect. This work shows that the thermal conductivity of SrTiO3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.
Keywords:  thermal conductivity      SrTiO3      annealing      phonon scattering  
Received:  05 May 2016      Revised:  02 September 2016      Published:  05 January 2017
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  63.20.K- (Phonon interactions)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332105, 51475396, 11335006, 21103109, 21176152, and 21373137), the Natural Science Foundation of Fujian Province of China (Grant No. 2013J01026), and the Fundamental Research Funds for Central Universities of China (Grant Nos. 2013121012, 20720140517, 20720160013, and 20720160020).
Corresponding Authors:  Hui-Qiong Wang, Jin-Cheng Zheng     E-mail:  hqwang@xmu.edu.cn;jczheng@xmu.edu.cn

Cite this article: 

Liang Zhang(张喨), Ning Li(李宁), Hui-Qiong Wang(王惠琼), Yufeng Zhang(张宇锋), Fei Ren(任飞), Xia-Xia Liao(廖霞霞), Ya-Ping Li(李亚平), Xiao-Dan Wang(王小丹), Zheng Huang(黄政), Yang Dai(戴扬), Hao Yan(鄢浩), Jin-Cheng Zheng(郑金成) Tuning the thermal conductivity of strontium titanate through annealing treatments 2017 Chin. Phys. B 26 016602

[1] DiSalvo F J 1999 Science 285 703
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Zheng J C 2008 Front. Phys. China 3 269
[4] Fan Z, Zheng J, Wang H Q and Zheng J C 2012 Nanoscale Res. Lett. 7 570
[5] He J, Zhao L D, Zheng J C, Doak J, Wu H, Wang H Q, Lee Y, Wolverton C, Kanatzidis M G and Dravid V P 2013 J. Am. Chem. Soc. 135 4624
[6] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
[7] Ravichandran J, Siemons W, Oh D W, Kardel J T, Chari A, Heijmerikx H, Scullin M L, Majumdar A, Ramesh R and Cahill D G, 2010 Phys. Rev. B 82 165126
[8] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[9] Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104
[10] Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Ihlefeld J F and Hopkins P E 2012 Appl. Phys. Lett. 101 231908
[11] Bhattacharya S, Dehkordi A M, Tennakoon S, Adebisi R, Gladden J R, Darroudi T, Alshareef H N and Tritt T M 2014 J. Appl. Phys. 115 223712
[12] Popuri S R, Scott A J M, Downie R A, Hall M A, Suard E, Decourt R, Pollet M and Bos J W G 2014 RSC adv. 4 33720
[13] Muta M, Kurosaki K and Yamanaka S 2005 J. Alloy. Comp. 392 306
[14] Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
[15] Li F, Chen J W, Chen J H, et al. 2015 Acta Phys. Sin. 64 198801(in Chinese)
[16] Yu H S, Xia H L, Hu W, et al. 2015 Acta Phys. Sin. 64 217402(in Chinese)
[17] Zhu Hui-Long, Luo Wei-Chun, Wang Yan-Rong, et al. 2015 Chin. Phys. B 24 117306
[18] Wang T, Cheng Y, Sun Y J, et al. 2015 Chin. Phys. B 24 107303
[19] Qiu R, Gao X, Jiang Y, et al. 2016 Acta Phys. Sin. 65 044209(in Chinese)
[20] Parker W J, Jenkins R J, Butler C P and Abbott G L 1961 J. Appl. Phys. 32 1679
[21] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria
[22] Sjöstedt E, Nordstrom L and Singh D J 2000 Solid State Commun. 114 15
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Perry C H, Khanna B N and Ruppecht G 1964 Phys. Rev. 135 408
[25] Gervais F, Servoin J L, Baratoff A, Bednorz J G and Bining G 1993 Phys. Rev. B 47 8187
[26] de Groot F M F, Faber J, Michiels J J M, Czyzyk M T, Abbate M and Fuggle J C 1993 Phys. Rev. B 48 2074
[27] Muller D A, Nakagawa N, Ohtomo A, Grazul J L and Hwang H Y 2004 Nature 430 657
[28] Browning N D, Moltaji H O and Buban J P 1998 Phys. Rev. B 58 8289
[29] Lusvardi V S, Barteau M A, Chen J G, Eng Jr. J, Frühberger J and Teplyakov A 1998 Surf. Sci. 397 237
[30] Liao X X, Wang H Q and Zheng J C 2013 J. Am. Ceram. Soc. 96 538
[31] Szot K, Specier W, Carius R, Zastrow U and Beyer W 2002 Phys. Rev. Lett. 88 075508
[32] Callaway J 1959 Phys. Rev. 113 1046
[33] Callaway J 1960 Phys. Rev. 120 1149
[34] Zou J, Kotchetkov D, Balandin A A, Florescu D I and Pollak F H 2002 J. Appl. Phys. 92 2534
[35] Klemens P G 1955 Proc. Phys. Soc. London A 68 1113
[36] Abeles B 1963 Phys. Rev. 131 1906
[37] He J Q, Girard S N, Zheng J C, Zhao L D, Kanatzidis M G and Dravid V P 2012 Adv. Mater. 24 4440
[38] Hao R, Lin W Q, Zheng J C and Lu M 2014 Int. J. Adhesion and Adhesives 49 58
[39] Zheng J C, Zhang L, Kretinin A V, Morozov S V, Wang Y B, Wang T, Li X, Ren F, Zhang J, Lu C Y, Chen J C, Lu M, Wang H Q, Geim A K and Novoselov K S 2016 2D Materials 3 011004
[1] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[2] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[3] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[4] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[5] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[6] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[7] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[8] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[9] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[10] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[11] Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction
Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), Hong Ding(丁洪). Chin. Phys. B, 2020, 29(11): 117503.
[12] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[13] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), Qing He(何清). Chin. Phys. B, 2020, 29(11): 117701.
[14] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2020, 29(10): 100303.
[15] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
No Suggested Reading articles found!