Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087201    DOI: 10.1088/1674-1056/25/8/087201

Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers

Xiao-Chuan Deng(邓小川)1, Xi-Xi Chen(陈茜茜)1, Cheng-Zhan Li(李诚瞻)2, Hua-Jun Shen(申华军)3, Jin-Ping Zhang(张金平)1
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Power Electronics Business Unit, Zhuzhou CSR Times Electric Co., Ltd., Zhuzhou 412001, China;
3 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Abstract  The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study. Three geometrical parameters, i.e., mesa height, mesa angle and mesa bottom corner, are investigated by numerical simulation. The simulation results show that a deep mesa height, a small mesa angle and a smooth mesa bottom (without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution. Moreover, an optimized mesa structure without sub-trench (mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated. A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm2 are obtained from the fabricated diode with a 30-μm thick N- epi-layer, corresponding to 85% of the ideal parallel-plane value. The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge.
Keywords:  silicon carbide      mesa configuration      PiN rectifier      breakdown voltage  
Received:  21 January 2016      Revised:  20 April 2016      Accepted manuscript online: 
PACS:  72.20.Ht (High-field and nonlinear effects)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61234006), the Open Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices, China (Grant No. KFJJ201301), and the National Science and Technology Major Project of the Ministry of Science and Technology, China (Grant No. 2013ZX02305-003).
Corresponding Authors:  Xiao-Chuan Deng     E-mail:

Cite this article: 

Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平) Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers 2016 Chin. Phys. B 25 087201

[1] Palmour J W 2014 International Electron Devices Meeting Technical Digest, December 15-17, 2014, San Francisco, USA, p. 1.1.1
[2] Hu J X, Liu W Y and Yang J F 2015 International Symposium on Power Semiconductor Devices & IC's, May 10-14, 2015, Hong Kong, China, p. 7
[3] Fukuda K, Okamoto D, Okamoto M, Deguchi T, et al. 2015 IEEE Trans. Electron Dev. 62 396
[4] Feng G, Suda J and Kimoto T 2011 IEEE Trans. Electron Dev. 59 414
[5] Sung W, Brunt E V, Baliga B J and Huang A Q 2011 IEEE Electron Dev. Lett. 32 880
[6] Ghandi R, Buono B, Domeij M, Malm G, Zetterling C M and Östling M 2009 IEEE Electron Dev. Lett. 30 1170
[7] Kaji N, Niwa H, Suda J and Kimoto T 2015 IEEE Trans. Electron Dev. 62 374
[8] Hiyoshi T, Hori T, Suda J and Kimoto T 2008 IEEE Trans. Electron Dev. 55 1841
[9] Niwa H, Feng G, Suda J and Kimoto T 2012 IEEE Trans. Electron Dev. 59 2748
[10] Deng X C, Feng Z, Zhang B, Li Z J, Li L and Pan H S 2009 Chin. Phys. B 18 3018
[11] Hatakeyama T, Nishio J, Ota C and Shinohe T 2005 IEEE International Conference on Simulation of Semiconductor Processes and Devices, September 1-3, 2005, Tokyo, Japan, p. 171
[12] Koketsu H, Hatayama T, Amishima K, Yano H and Fuyuki T 2011 Mater. Sci. Forum 679-680 485
[13] Han C, Zhang Y M, Song Q W, Zhang Y M, Tang X Y, Yang F and Niu Y X 2015 IEEE Trans. Electron Dev. 62 1223
[14] Noborio M, Suda and Kimoto T 2009 IEEE Trans. Electron Dev. 56 1953
[15] Kimoto T, Kanzaki Y, Noborio M, Kawano H and Matsunami H 2005 Jpn. J. Appl. Phys. 44 1213
[16] Liu X Y, Wang Y Y, Peng Z Y, Li C Z, Wu J, Bai Y, Tang Y D, Liu K A and Shen H J 2015 Chin. Phys. B 24 087304
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[8] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[9] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!