Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080311    DOI: 10.1088/1674-1056/25/8/080311
GENERAL Prev   Next  

Demonstration of a cold atom beam splitter on atom chip

Xiaojun Jiang(蒋小军)1,2, Xiaolin Li(李晓林)1, Haichao Zhang(张海潮)1, Yuzhu Wang(王育竹)1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences(CAS), Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio.

Keywords:  beam splitter      cold atoms      atom chip     
Received:  14 January 2016      Published:  05 August 2016
PACS:  03.75.Be (Atom and neutron optics)  
  03.65.Nk (Scattering theory)  
  37.10.Gh (Atom traps and guides)  
Fund: 

Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

Corresponding Authors:  Haichao Zhang, Yuzhu Wang     E-mail:  zhanghc@siom.ac.cn;yzwang@mail.shcnc.ac.cn

Cite this article: 

Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹) Demonstration of a cold atom beam splitter on atom chip 2016 Chin. Phys. B 25 080311

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Juffmann T, Milic A, Müllneritsch M, Asenbaum P, Tsukernik A, Tüxen J, Mayor M, Cheshnovsky O and Arndt M 2012 Nat. Nanotechnol. 7 297
[3] Cronin A, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[4] Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515B
[5] Kasevich, M and Chu S 1991 Phys. Rev. Lett. 67 181
[6] Wu S, Wang Y J, Diot Q and Prentiss M 2005 Phys. Rev. A 71 043602
[7] Machluf S, Japha Y and Folman R 2013 Nat. Commun. 4 2424
[8] Rasel E M, Oberthaler M K, Batelaan H, Schmiedmayer J and Zeilinger A 1995 Phys. Rev. Lett. 75 2633
[9] Brezger, B, Hackermuller L, Uttenthaler S, Petschinka J, Arndt M and Zeilinger A 2002 Phys. Rev. Lett. 88 100404
[10] Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R and Wu S 2005 Phys. Rev. Lett. 94 090405
[11] Pezze L and Smerzi A 2006 Phys. Rev. A 73 011801
[12] Li W, He T and Smerzi A 2014 Phys. Rev. Lett. 113 023003
[13] Lenef A, Hammond T, Smith E, Chapman M, Rubenstein R and Pritchard D 1997 Phys. Rev. Lett. 78 760
[14] Gustavson T L, Landragin A and Kasevich M A 2000 Class. Quantum Gravity 17 2385
[15] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[16] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[17] Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[18] Dubetsky B and Kasevich M A 2006 Phys. Rev. A 74 023615
[19] Houde O, Kadio D and Pruvost L 2000 Phys. Rev. Lett. 85 5543
[20] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
[21] Mu R W, Wang Z L, Li Y L, Mu X M Ji R W, Wang Z L, Li Y L, Ji X M and Yin J P 2010 Eur. Phys. J. D 59 291
[22] McDonald G D, Keal H, Altin P A, Debs J E, Bennetts S, Kuhn C C N, Hardman K S, Johnsson M T, Close J D and Robins N P 2013 Phys. Rev. A 87 013632
[23] Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483
[24] Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A and Anderson D Z 2000 Opt. Lett. 25 1382
[25] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nat. Phys. 1 57
[26] Lesanovsky I and von Klitzing W 2007 Phys. Rev. Lett. 99 083001
[27] Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2005 Phys. Rev. A 72 021604
[28] Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[29] Hinds E A, Vale C J and Boshier M G 2001 Phys. Rev. Lett. 86 1462
[30] Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W and Reichel J 2005 New J. Phys. 7 3
[31] Ke M, Yan B, Cheng F and Wang Y Z 2009 Chin. Phys. B 18 4823
[32] Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
[33] Jackson J D 1999 Classical Electrodynamics, 3nd edn. (New York:Wiley)
[34] Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
[1] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[2] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[3] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[4] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[5] A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics
Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2018, 27(1): 016703.
[6] Microwave coherent manipulation of cold atoms in optically induced fictitious magnetic traps on an atom chip
Feng Zhou(周锋), Xiao Li(李潇), Min Ke(柯敏), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2017, 26(9): 090701.
[7] Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap
Jun Cheng(程俊), Jing-fang Zhang(张敬芳), Xin-ping Xu(许忻平), Hai-chao Zhang(张海潮), Yu-zhu Wang(王育竹). Chin. Phys. B, 2017, 26(3): 033701.
[8] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[9] Utra-thin anisotropic transmitting metasurface for polarization beam splitter application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(8): 084101.
[10] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[11] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
[12] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting, Su Dian-Qiang, Ji Zhong-Hua, Zhang Hong-Shan, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2015, 24(9): 093701.
[13] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang, He Yan-Zhang, Bao Cheng-Guang. Chin. Phys. B, 2015, 24(6): 060305.
[14] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan, Hu Zhao-Hui, Qi Lu. Chin. Phys. B, 2015, 24(2): 024203.
[15] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao, Deng Lian-Zhong, Xu Liang, Yin Jian-Ping. Chin. Phys. B, 2015, 24(11): 113702.
No Suggested Reading articles found!