Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080311    DOI: 10.1088/1674-1056/25/8/080311
GENERAL Prev   Next  

Demonstration of a cold atom beam splitter on atom chip

Xiaojun Jiang(蒋小军)1,2, Xiaolin Li(李晓林)1, Haichao Zhang(张海潮)1, Yuzhu Wang(王育竹)1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences(CAS), Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio.

Keywords:  beam splitter      cold atoms      atom chip     
Received:  14 January 2016      Published:  05 August 2016
PACS:  03.75.Be (Atom and neutron optics)  
  03.65.Nk (Scattering theory)  
  37.10.Gh (Atom traps and guides)  

Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

Corresponding Authors:  Haichao Zhang, Yuzhu Wang     E-mail:;

Cite this article: 

Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹) Demonstration of a cold atom beam splitter on atom chip 2016 Chin. Phys. B 25 080311

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Juffmann T, Milic A, Müllneritsch M, Asenbaum P, Tsukernik A, Tüxen J, Mayor M, Cheshnovsky O and Arndt M 2012 Nat. Nanotechnol. 7 297
[3] Cronin A, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[4] Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515B
[5] Kasevich, M and Chu S 1991 Phys. Rev. Lett. 67 181
[6] Wu S, Wang Y J, Diot Q and Prentiss M 2005 Phys. Rev. A 71 043602
[7] Machluf S, Japha Y and Folman R 2013 Nat. Commun. 4 2424
[8] Rasel E M, Oberthaler M K, Batelaan H, Schmiedmayer J and Zeilinger A 1995 Phys. Rev. Lett. 75 2633
[9] Brezger, B, Hackermuller L, Uttenthaler S, Petschinka J, Arndt M and Zeilinger A 2002 Phys. Rev. Lett. 88 100404
[10] Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R and Wu S 2005 Phys. Rev. Lett. 94 090405
[11] Pezze L and Smerzi A 2006 Phys. Rev. A 73 011801
[12] Li W, He T and Smerzi A 2014 Phys. Rev. Lett. 113 023003
[13] Lenef A, Hammond T, Smith E, Chapman M, Rubenstein R and Pritchard D 1997 Phys. Rev. Lett. 78 760
[14] Gustavson T L, Landragin A and Kasevich M A 2000 Class. Quantum Gravity 17 2385
[15] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[16] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[17] Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[18] Dubetsky B and Kasevich M A 2006 Phys. Rev. A 74 023615
[19] Houde O, Kadio D and Pruvost L 2000 Phys. Rev. Lett. 85 5543
[20] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
[21] Mu R W, Wang Z L, Li Y L, Mu X M Ji R W, Wang Z L, Li Y L, Ji X M and Yin J P 2010 Eur. Phys. J. D 59 291
[22] McDonald G D, Keal H, Altin P A, Debs J E, Bennetts S, Kuhn C C N, Hardman K S, Johnsson M T, Close J D and Robins N P 2013 Phys. Rev. A 87 013632
[23] Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483
[24] Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A and Anderson D Z 2000 Opt. Lett. 25 1382
[25] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nat. Phys. 1 57
[26] Lesanovsky I and von Klitzing W 2007 Phys. Rev. Lett. 99 083001
[27] Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2005 Phys. Rev. A 72 021604
[28] Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[29] Hinds E A, Vale C J and Boshier M G 2001 Phys. Rev. Lett. 86 1462
[30] Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W and Reichel J 2005 New J. Phys. 7 3
[31] Ke M, Yan B, Cheng F and Wang Y Z 2009 Chin. Phys. B 18 4823
[32] Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
[33] Jackson J D 1999 Classical Electrodynamics, 3nd edn. (New York:Wiley)
[34] Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
[1] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[2] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[3] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[4] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[5] A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics
Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2018, 27(1): 016703.
[6] Microwave coherent manipulation of cold atoms in optically induced fictitious magnetic traps on an atom chip
Feng Zhou(周锋), Xiao Li(李潇), Min Ke(柯敏), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2017, 26(9): 090701.
[7] Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap
Jun Cheng(程俊), Jing-fang Zhang(张敬芳), Xin-ping Xu(许忻平), Hai-chao Zhang(张海潮), Yu-zhu Wang(王育竹). Chin. Phys. B, 2017, 26(3): 033701.
[8] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[9] Utra-thin anisotropic transmitting metasurface for polarization beam splitter application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(8): 084101.
[10] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang(蒋小军), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(3): 034204.
[11] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
[12] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting, Su Dian-Qiang, Ji Zhong-Hua, Zhang Hong-Shan, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2015, 24(9): 093701.
[13] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang, He Yan-Zhang, Bao Cheng-Guang. Chin. Phys. B, 2015, 24(6): 060305.
[14] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan, Hu Zhao-Hui, Qi Lu. Chin. Phys. B, 2015, 24(2): 024203.
[15] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao, Deng Lian-Zhong, Xu Liang, Yin Jian-Ping. Chin. Phys. B, 2015, 24(11): 113702.
No Suggested Reading articles found!