Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078109    DOI: 10.1088/1674-1056/25/7/078109

Molecular dynamics study of anisotropic growth of silicon

Naigen Zhou(周耐根)1, Bo Liu(刘博)1, Chi Zhang(张弛)1, Ke Li(李克)1, Lang Zhou(周浪)1,2
1 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China;
2 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
Abstract  Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si (100), (110), (111), and (112) planes. The sequences of the kinetic coefficients and growth velocities are μ(100)> μ(110)> μ(112) > μ(111) and v(100)> v(110) > v(112) > v(111), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However, they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid-liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si (111) plane.
Keywords:  anisotropy growth      kinetic coefficient      silicon      molecular dynamics  
Received:  24 January 2016      Revised:  08 March 2016      Published:  05 July 2016
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 51561022, and 61464007) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206001).
Corresponding Authors:  Lang Zhou     E-mail:

Cite this article: 

Naigen Zhou(周耐根), Bo Liu(刘博), Chi Zhang(张弛), Ke Li(李克), Lang Zhou(周浪) Molecular dynamics study of anisotropic growth of silicon 2016 Chin. Phys. B 25 078109

[1] Li J M, Chong M, Zhu J C, Li Y J, Xu J D, Wang P D, Shang Z Q, Yang Z K, Zhu R H and Cao X L 1992 Appl. Phys. Lett. 60 2240
[2] Sarti D and Einhaus R 2002 Sol. Energy Mater. Sol. Cells 72 27
[3] Würzner S, Helbig R, Funke C and Möller H J 2010 J. Appl. Phys. 108 083516
[4] Stokkan G 2010 Acta Mater. 58 3223
[5] Wang H Y, Usami, Fujiwara K, Kutuskake and Nakajima K 2009 Acta Mater. 57 3268
[6] Usami N, Yokoyama R, Takahashi I, Kutsukake K, Fujiwara K and Nakajima K 2010 J. Appl. Phys. 107 013511
[7] Fujiwara K, Obinata Y, Ujihara T, Usami N, Sazaki G and Nakajima K 2004 J. Cryst. Growth 266 441
[8] Fujiwara K, Fukuda H, Usami N, Nakajima K and Uda S 2010 Phys. Rev. B 81 224106
[9] Yang X B, Fujuwara K, Gotoh R, Maeda K, Nozawa J, Koizumi H and Uda S 2010 Appl. Phys. Lett. 97 172104
[10] Fujiwara K 2012 Int. J. Photoenergy 30 311
[11] Hoyt J J and Asta M 2002 Phys. Rev. B 65 392
[12] Ashkenazy Y and Averback R S 2010 Acta Mater. 58 524
[13] Sun D Y and Hoyt J J 2004 Phys. Rev. B 69 1129
[14] Majeed A and Laird B B 2006 Phys. Rev. Lett. 97 216102
[15] Monk J, Yang Y, Mendelev M I, Asta M, Hoyt J J and Sun D Y 2010 Modell. Simul. Mater. Sci. Eng. 18 317
[16] Apte P A and Zeng X C 2008 Appl. Phys. Lett. 92 221903
[17] Hoyt J J, Asta M and Karma A 2003 Mater. Sci. Eng. R 41 121
[18] Davidchack R L and Larid B B 2005 J. Phys. Chem. B 109 17802
[19] Zhang Y P, Lin X, Wei L, Peng D J, Wang M and Huang W D 2013 Acta Phys. Sin. 62 178105 (in Chinese)
[20] Li M E, Xiao Z Y, Yang G C and Zhou Y H 2006 Chin. Phys. B 15 219
[21] Hoyt J J, Sadigh B, Asta M and Foils S M 1999 Acta Mater. 47 3181
[22] Broughton J, Gilmer G and Jackson K 1982 Phys. Rev. Lett. 49 1496
[23] Tersoff J 1989 Phys. Rev. B 39 5566
[24] Zhou N G, Hu Q F, Xu W X, Li K and Zhou L 2013 Acta Phys. Sin. 62 146401 (in Chinese)
[25] Tersoff J 1986 Phys. Rev. Lett. 56 632
[26] Tersoff J 1988 Phys. Rev. B 38 9902
[27] Velet L 1967 Phys. Rev. 159 98
[28] Lutsko J F, Wolf D, Phillpot S R and Yip S 1989 Phys. Rev. B 40 2841
[29] Wang H L, Wang X X, Wang Y and Liang H Y 2006 Acta Phys. Chim. Sin. 22 1367 (in Chinese)
[30] Husiman W J. Peter J F, Derks J W and Ficke H G 1997 Rev. Sci. Instrum. 68 4169
[31] Celestini F and Debierre J M 2002 Phys. Rev. E 65 110
[32] Hashibon A, Adler J, Finnis M W and Kaplan W D 2001 Comp. Mater. Sci. 24 443
[33] Kob W 1998 J. Phys.: Condens. Matter 11 R85
[1] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[2] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[3] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[4] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[5] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[6] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[7] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[8] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[12] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[13] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[14] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[15] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
No Suggested Reading articles found!