Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078108    DOI: 10.1088/1674-1056/25/7/078108
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

A-site ordered quadruple perovskite oxides AA3'B4O12

Youwen Long(龙有文)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

The A-site ordered perovskite oxides with chemical formula AA3'B4O12 display many intriguing physical properties due to the introduction of transition metals at both A' and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A'-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer (LaCuLaCu33+Fe43+O12→LaCu32+Fe43.75+O12) leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spindriven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms.

Keywords:  high-pressure synthesis      A-site ordered perovskite      charge transfer      multiferroicity  
Received:  18 August 2015      Revised:  30 September 2015      Accepted manuscript online: 
PACS:  81.40.Vw (Pressure treatment)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

Corresponding Authors:  Youwen Long     E-mail:  ywlong@iphy.ac.cn

Cite this article: 

Youwen Long(龙有文) A-site ordered quadruple perovskite oxides AA3'B4O12 2016 Chin. Phys. B 25 078108

[1] Wul B 1946 Nature 157 808
[2] Shirane G, Pepinsky R and Frazer B C 1955 Phys. Rev. 97 1179
[3] Matthias B and Hippel A V 1948 Phys. Rev. 73 1378
[4] Weaver H E 1959 J. Phys. Chem. Solids 11 274
[5] Spaldin N A, Cheong S W and Ramesh R 2010 Physics Today 63 38
[6] Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M E, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G and Ratcliff W D 2015 Phys. Rev. Lett. 114 217602
[7] Schooley J F, Hosler W R and Cohen M L 1964 Phys. Rev. Lett. 12 474
[8] Raub C J, Sweedler A R, Jensen M A, Broadston S and Matthias B T 1964 Phys. Rev. Lett. 13 746
[9] Karppinen M and Yamauchi H 1999 Mater. Sci. Eng., R 26 51
[10] Helmolt R V, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331
[11] Tendeloo1 G V, Lebedev O I, Hervieu M and Raveau B 2004 Rep. Prog. Phys. 67 1315
[12] Keane M A 2003 J. Mater. Sci. 38 4661
[13] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[14] Philipp J B, Majewski P, Alff L, Erb A and Gross R 2003 Phys. Rev. B 68 144431
[15] Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M and Tokura Y 2002 Appl. Phys. Lett. 81 328
[16] Krockenberger Y, Mogare K, Reehuis M, Tovar M, Jansen M, Vaitheeswaran G, Kanchana V, Bultmark F, Delin A, Wilhelm F, Rogalev A, Winkler A and Alff L 2007 Phys. Rev. B 75 020404
[17] Morrow R, Mishra R, Restrepo O D, Ball M R, Windl W, Wurmehl S, Stockert U, Büchner B and Woodward P M 2013 J. Am. Chem. Soc. 135 18824
[18] Paul A K, Jansen M, Yan B, Felser C, Reehuis M and Abdala P M 2013 Inorg. Chem. 52 6713
[19] Kobayashi K I, Kimura T, Tomioka Y, Sawada H and Terakura K 1999 Phys. Rev. B 59 11159
[20] Vasilév A N and Volkova O S 2007 Low Temp. Phys. 33 895
[21] Shimakawa Y, Shiraki H and Saito T 2008 J. Phys. Soc. Jpn. 77 113702
[22] Ramirez A P, Subramanianb M A, Gardel M, Blumberg G, Li D, Vogtc T and Shapiro S M 2000 Solid State Commun. 115 217
[23] Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001 Science 293 673
[24] Zeng Z, Greenblatt M, Subramanian M A and Croft M 1999 Phys. Rev. Lett. 82 3164
[25] Alonso J A, Sánchez-Benítez J, Andrés A D, Marínez-Lope M J, Casais M T and Martínez J L 2003 Appl. Phys. Lett. 83 2623
[26] Takata K, Yamada I, Azuma M, Takano M and Shimakawa Y 2007 Phys. Rev. B 76 024429
[27] Mezzadri F, Calestani G, Calicchio M, Gilioli E, Bolzoni F, Cabassi R, Marezio M and Migliori A 2009 Phys. Rev. B 79 100106(R)
[28] Long Y W, Saito T, Mizumaki M, Agui A and Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244
[29] Shimakawa Y 2008 Inorg. Chem. 47 8562
[30] Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60
[31] Long Y W and Shimakawa Y 2010 New J. Phys. 12 063029
[32] Chen W T, Long Y W, Saito T, Attfield J P and Shimakawa Y 2010 J. Mater. Chem. 20 7282
[33] Long Y W, Kawakami T, Chen W T, Saito T, Watanuki T, Nakakura Y, Liu Q Q, Jin C Q and Shimakawa Y 2012 Chem. Mater. 24 2235
[34] Long Y W, Saito T, Tohyama T, Oka K, Azuma M and Shimakawa Y 2009 Inorg. Chem. 48 8489
[35] Yamada I, Etani H, Tsuchida K, Marukawa S, Hayashi N, Kawakami T, Mizumaki M, Ohgushi K, KusanoY, Kim J, Tsuji N, Takahashi R, Nishiyama N, Inoue T, Irifune T and Takano M 2013 Inorg. Chem. 52 13751
[36] Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q and Long Y W 2015 Phys. Rev. Lett. 115 087610
[37] Yang J Y, Zhou L, Cheng J G, Hu Z W, Kuo C, Pao C W, Jang L, Lee J F, Dai J H, Zhang S J, Feng S M, Kong P P, Yuan Z, Yuan J, Uwatoko Y, Liu T, Jin C Q and Long Y W 2015 Inorg. Chem. 54 6433
[38] Liu T, Zhang Y J, Kanegawa S and Sato O 2010 J. Am. Soc. Chem. 132 8250
[39] Koumousi E S, Jeon I R, Gao Q, Dechambenoit P, Woodruff D N, Merzeau P, Buisson L, Jia X, Li D, Volatron F, Mathoni'ere C and Clérac R 2014 J. Am. Soc. Chem. 136 15461
[40] Cafun J D, Lejeune J, Baudelet F, Dumas P, Itié J P and Bleuzen A 2012 Angew. Chem. Int. Ed. 51 9146
[41] Li X, Cui X H, Liu X W, Jin M Z, Xiao L Z and Zhao M Y 1991 Hyperfine Interact. 69 851
[42] Blaauw C and Woude F 1973 J. Phys. C: Solid State Phys. 6 1422
[43] Kawasaki S, Takano M and Takeda Y 1996 J. Solid State Chem. 121 174
[44] Takano M, Nakanishi N, Takeda Y, Naka S and Takada T 1977 Mater. Res. Bull. 12 923
[45] Etani H, Yamada I, Ohgushi K, Hayashi N, KusanoY, Mizumaki M, Kim J, Tsuji N, Takahashi R, Nishiyama N, Inoue T, Irifune T and Takano M 2013 J. Am. Chem. Soc. 135 6100
[46] Rezaei N, Hansmann P, Bahramy M S and Arita R 2014 Phys. Rev. B 89 125125
[47] Schmid H 1994 Ferroelectrics 162 317
[48] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[49] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[50] Spaldin N A and Fiebig M 2005 Science 309 391
[51] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[52] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[53] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[54] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[55] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[56] Scott J F 2013 NPG Asia Mater. 5 e72
[57] Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
[58] Van Aken B, Palstra T T M, Filippetti A and Spaldin N A 2004 Nat. Mater. 3 164
[59] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y and Kitô H 2005 Nature 436 1136
[60] Chapon L C, Radaelli P G, Blake G R, Park S and Cheong S W 2006 Phys. Rev. Lett. 96 097601
[61] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
[62] Kimura T, Lawes G and Ramirez A P 2005 Phys. Rev. Lett. 94 137201
[63] Katsura H, Nagaosa N and Balatsky V 2005 Phys. Rev. Lett. 95 057205
[64] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[65] Sergienko I A, Şen C and Dagotto E 2006 Phys. Rev. Lett. 97 227204
[66] Arima T 2007 J. Phys. Soc. Jpn. 76 073702
[67] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[68] Prodi A, Gilioli E, Gauzzi A, Licci F, Marezio M, Bolzoni F, Huang Q, Santoro A and Lynn J W 2004 Nat. Mater. 3 48
[69] Johnson R D, Chapon L C, Khalyavin D D, Manuel P, Radaelli P G and Martin C 2012 Phys. Rev. Lett. 108 067201
[70] Zhang G, Dong S, Yan Z, Guo Y, Zhang Q, Yunoki S, Dagotto E and Liu J M 2011 Phys. Rev. B 84 174413
[71] N. Mufti, Nugroho A A, Blake G R and Palstra T T M 2010 J. Phys.: Condens. Matter 22 075902
[72] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[73] Bokov A A and Ye Z G 2006 J. Mater. Sci. 41 31
[74] Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y and Scott J F 2011 Phys. Rev. Lett. 107 117201
[75] Johnson R D, Terada N and Radaelli P G 2012 Phys. Rev. Lett. 108 219701
[76] Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Wu M K, Pellegrin E, Valvidares S M, Li Z W, Adler P, Todorava A, Küchler R, Steppke A, Tjeng L H, Hu Z and Komared A C 2014 Phys. Rev. Lett. 113 217203
[77] Johnson R D, Cao K, Giustino F and Radaelli P G 2014 Phys. Rev. B 90 045129
[78] Iyama A and Kimura T 2013 Phys. Rev. B 87 180408(R)
[79] Scott J F 2008 J. Phys.: Condens. Matter 20 021001
[80] Okazaki K and Maiwa H 1992 Jpn. J. Appl. Phys. 31 3113
[81] Ramesha K, Llobet A, Proffen Th, Serrao C R and Rao C N R 2007 J. Phys.: Condens. Matter 19 102202
[82] Amrani M, Zaghrioui M, Phuoc V, Gervais F and Massa N E 2014 J. Magn. Magn. Mater. 361 1
[83] Kolev N, Bontchev R P, Jacobson A J, Popov V N, Hadjiev V G, Litvinchuk A P and Iliev M N 2002 Phys. Rev. B 66 132102
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[3] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[4] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[5] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[6] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[7] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[8] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[9] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[10] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[11] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[12] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[13] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[14] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[15] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
No Suggested Reading articles found!