Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077803    DOI: 10.1088/1674-1056/25/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

Alireza Samavati1,2, A F Ismail2, Hadi Nur1, Z Othaman1, M K Mustafa3
1 Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia;
2 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia;
3 Faculty of Science Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
Abstract  Zn1-xCuxO (x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x= 0.05). However, the peak corresponding to CuO for x=0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping.
Keywords:  Cu-doped ZnO nanoparticles      photoluminescence      antibacterial      E. coli  
Received:  31 January 2016      Revised:  21 March 2016      Published:  05 July 2016
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.55.-m (Photoluminescence, properties and materials)  
  87.55.de (Optimization)  
Fund: Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.
Corresponding Authors:  A F Ismail     E-mail:  afauzi@utm.my

Cite this article: 

Alireza Samavati, A F Ismail, Hadi Nur, Z Othaman, M K Mustafa Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method 2016 Chin. Phys. B 25 077803

[1] Xue H, Chen Y, Xu X, Zhang G H, Zhang H and Ma S Y 2009 Physica E: Low-dimensional Systems and Nanostructures 41 788
[2] Yuan Q, Hein and Misra R 2010 Acta Biomaterialia 6 2732
[3] Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
[4] Ding H F, Yang H T, Liu L P, Xiao R, Song N N, Shen J, Zhang X Q, Cheng Z H and Zhao G P 2015 Chin. Phys. B 24 027804
[5] Zhou H, Fang G, Yuan L, Wang C, Yang X, Huang H, Zhou C and Zhao X 2009 Appl. Phys. Lett. 94 3503
[6] Ohira T, Yamamoto O, Iida Y and Nakagawa Z E 2008 J. Mater. Sci.: Mater. Med. 19 1407
[7] Samavati A, Othaman Z, Ghoshal S and Mustafa M 2015 Superlattices Microstruct. 86 134
[8] Tokumoto M S, Pulcinelli S H, Santilli C V and Briois V 2003 J. Phys. Chem. B 107 568
[9] Baruwati B, Kumar D K and Manorama S V 2006 Sens. Actuat. B: Chem. 119 676
[10] Cimitan S, Albonetti S, Forni L, Peri F and Lazzari D 2009 J. Colloid Interf. Sci. 329 73
[11] Yadav R S, Mishra P and Pandey A C 2008 Ultrason. Sonochem. 15 863
[12] Okada T, Agung B and Nakata Y 2004 Appl. Phys. A 79 1417
[13] Ullah R and Dutta J 2008 J. Hazardous Mater. 156 194
[14] Wang J, Huang G, Zhong X, Sun L, Zhou Y and Liu E 2006 Appl. Phys. Lett. 88 252502
[15] Chen K J, Fang T H, Hung F Y, Ji L W, Chang S J, Young S J and Hsiao Y 2008 Appl. Surf. Sci. 254 5791
[16] Nair M G, Nirmala M, Rekha K and Anukaliani A 2011 Mater. Lett. 65 1797
[17] King S L, Gardeniers J and Boyd I W 1996 Appl. Surf. Sci. 96 811
[18] Page K, Wilson M and Parkin I P 2009 J. Mater. Chem. 19 3819
[19] Li J, Hong R, Li M, Li H, Zheng Y and Ding J 2009 Progress in Organic Coatings 64 504
[20] Raghupathi K R, Koodali R T and Manna A C 2011 Langmuir 27 4020
[21] Premanathan M, Karthikeyan K, Jeyasubramanian K and Manivannan G 2011 Nanomedicine: Nanotechnology, Biology and Medicine 7 184
[22] Aruoja V, Dubourguier H C, Kasemets K and Kahru A 2009 Sci. Total Environ. 407 1461
[23] Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D and Hao B 2008 Langmuir 24 4140
[24] Sharma V, Shukla R K, Saxena N, Parmar D, Das M and Dhawan A 2009 Toxicology Lett. 185 211
[25] Jones N, Ray B, Ranjit K T and Manna A C 2008 FEMS Microbiology Lett. 279 71
[26] Zhang L, Jiang Y, Ding Y, Povey M and York D 2007 J. Nanopart. Res. 9 479
[27] Cullity B 1978 Elements of X-ray Diffraction
[28] Gayen R, Das S, Dalui S, Bhar R and Pal A 2008 J. Cryst. Growth 310 4073
[29] Sahar M and Budi A S 2006 Solid State Sci. Technol. 14115
[30] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S and Morkocd H 2005 J. Appl. Phys. 98 041301
[31] Dingle R 1969 Phys. Rev. Lett. 23 579
[32] Garces N, Wang L, Bai L, Giles N, Halliburton L and Cantwell G 2002 Appl. Phys. Lett. 81 622
[33] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[34] West C, Robbins D, Dean P and Hayes W 1983 Physica B 116 492
[35] Soundarrajan P, Sankarasubramanian K, Sampath M, Logu T, Sethuraman K and Ramamurthi K 2015 Physica E: Low-dimensional Systems and Nanostructures 71 56
[36] Grundmann M 2010 Heidelberg
[37] Bedir M, Öztas M, Yazici A N and Kafadar E V 2006 Chin. Phys. Lett. 23 939
[38] Schwartz V B, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, Förch R, Landfester K and Jonas U 2012 Adv. Funct. Mater. 22 2376
[1] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[2] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[3] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[4] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[5] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[6] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[7] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[8] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[9] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
[10] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[11] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[12] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[13] Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes
Ying-Shuang Mei(梅盈爽), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Yin-Lan Ruan(阮银兰), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(1): 016101.
[14] Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏). Chin. Phys. B, 2019, 28(1): 017101.
[15] Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application
Tingting Yin(尹婷婷), Liyong Jiang(蒋立勇), Zexiang Shen(申泽骧). Chin. Phys. B, 2018, 27(9): 097803.
No Suggested Reading articles found!