Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077803    DOI: 10.1088/1674-1056/25/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

Alireza Samavati1,2, A F Ismail2, Hadi Nur1, Z Othaman1, M K Mustafa3
1 Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia;
2 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia;
3 Faculty of Science Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
Abstract  Zn1-xCuxO (x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x= 0.05). However, the peak corresponding to CuO for x=0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping.
Keywords:  Cu-doped ZnO nanoparticles      photoluminescence      antibacterial      E. coli  
Received:  31 January 2016      Revised:  21 March 2016      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.55.-m (Photoluminescence, properties and materials)  
  87.55.de (Optimization)  
Fund: Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.
Corresponding Authors:  A F Ismail     E-mail:  afauzi@utm.my

Cite this article: 

Alireza Samavati, A F Ismail, Hadi Nur, Z Othaman, M K Mustafa Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method 2016 Chin. Phys. B 25 077803

[1] Xue H, Chen Y, Xu X, Zhang G H, Zhang H and Ma S Y 2009 Physica E: Low-dimensional Systems and Nanostructures 41 788
[2] Yuan Q, Hein and Misra R 2010 Acta Biomaterialia 6 2732
[3] Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
[4] Ding H F, Yang H T, Liu L P, Xiao R, Song N N, Shen J, Zhang X Q, Cheng Z H and Zhao G P 2015 Chin. Phys. B 24 027804
[5] Zhou H, Fang G, Yuan L, Wang C, Yang X, Huang H, Zhou C and Zhao X 2009 Appl. Phys. Lett. 94 3503
[6] Ohira T, Yamamoto O, Iida Y and Nakagawa Z E 2008 J. Mater. Sci.: Mater. Med. 19 1407
[7] Samavati A, Othaman Z, Ghoshal S and Mustafa M 2015 Superlattices Microstruct. 86 134
[8] Tokumoto M S, Pulcinelli S H, Santilli C V and Briois V 2003 J. Phys. Chem. B 107 568
[9] Baruwati B, Kumar D K and Manorama S V 2006 Sens. Actuat. B: Chem. 119 676
[10] Cimitan S, Albonetti S, Forni L, Peri F and Lazzari D 2009 J. Colloid Interf. Sci. 329 73
[11] Yadav R S, Mishra P and Pandey A C 2008 Ultrason. Sonochem. 15 863
[12] Okada T, Agung B and Nakata Y 2004 Appl. Phys. A 79 1417
[13] Ullah R and Dutta J 2008 J. Hazardous Mater. 156 194
[14] Wang J, Huang G, Zhong X, Sun L, Zhou Y and Liu E 2006 Appl. Phys. Lett. 88 252502
[15] Chen K J, Fang T H, Hung F Y, Ji L W, Chang S J, Young S J and Hsiao Y 2008 Appl. Surf. Sci. 254 5791
[16] Nair M G, Nirmala M, Rekha K and Anukaliani A 2011 Mater. Lett. 65 1797
[17] King S L, Gardeniers J and Boyd I W 1996 Appl. Surf. Sci. 96 811
[18] Page K, Wilson M and Parkin I P 2009 J. Mater. Chem. 19 3819
[19] Li J, Hong R, Li M, Li H, Zheng Y and Ding J 2009 Progress in Organic Coatings 64 504
[20] Raghupathi K R, Koodali R T and Manna A C 2011 Langmuir 27 4020
[21] Premanathan M, Karthikeyan K, Jeyasubramanian K and Manivannan G 2011 Nanomedicine: Nanotechnology, Biology and Medicine 7 184
[22] Aruoja V, Dubourguier H C, Kasemets K and Kahru A 2009 Sci. Total Environ. 407 1461
[23] Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D and Hao B 2008 Langmuir 24 4140
[24] Sharma V, Shukla R K, Saxena N, Parmar D, Das M and Dhawan A 2009 Toxicology Lett. 185 211
[25] Jones N, Ray B, Ranjit K T and Manna A C 2008 FEMS Microbiology Lett. 279 71
[26] Zhang L, Jiang Y, Ding Y, Povey M and York D 2007 J. Nanopart. Res. 9 479
[27] Cullity B 1978 Elements of X-ray Diffraction
[28] Gayen R, Das S, Dalui S, Bhar R and Pal A 2008 J. Cryst. Growth 310 4073
[29] Sahar M and Budi A S 2006 Solid State Sci. Technol. 14115
[30] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S and Morkocd H 2005 J. Appl. Phys. 98 041301
[31] Dingle R 1969 Phys. Rev. Lett. 23 579
[32] Garces N, Wang L, Bai L, Giles N, Halliburton L and Cantwell G 2002 Appl. Phys. Lett. 81 622
[33] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[34] West C, Robbins D, Dean P and Hayes W 1983 Physica B 116 492
[35] Soundarrajan P, Sankarasubramanian K, Sampath M, Logu T, Sethuraman K and Ramamurthi K 2015 Physica E: Low-dimensional Systems and Nanostructures 71 56
[36] Grundmann M 2010 Heidelberg
[37] Bedir M, Öztas M, Yazici A N and Kafadar E V 2006 Chin. Phys. Lett. 23 939
[38] Schwartz V B, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, Förch R, Landfester K and Jonas U 2012 Adv. Funct. Mater. 22 2376
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!