Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076601    DOI: 10.1088/1674-1056/25/7/076601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

Muhammad Imran1, Fayyaz Hussain1, Muhammad Rashid2, Muhammad Ismail3, Hafeez Ullah1,6, Yongqing Cai4, M Arshad Javid5, Ejaz Ahmad1, S A Ahmad6
1 Material Simulation Research Laboratory (MSRL), Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan;
2 Department of Physics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan;
3 Department of Physics, Govt. College University Faisalabad, Layyah Campus, Layyah 31200, Pakistan;
4 Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore;
5 Department of Basic Sciences (Physics), UET, Taxila;
6 Department of Physics, Simulation Laboratory, the Islamia University of Bahawalpur, 63100, Pakistan
Abstract  Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.
Keywords:  molecular dynamics      surface diffusion      adatoms      atomic exchange  
Received:  20 August 2015      Revised:  23 February 2016      Published:  05 July 2016
PACS:  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
Corresponding Authors:  Muhammad Imran     E-mail:  anam_iub@yahoo.com,fayyazhussain248@yahoo.com

Cite this article: 

Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Muhammad Ismail, Hafeez Ullah, Yongqing Cai, M Arshad Javid, Ejaz Ahmad, S A Ahmad Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters 2016 Chin. Phys. B 25 076601

[1] Tsong T T 1988 Reports on Progress in Physics 51 759
[2] Tsong T T 2003 Material Science and Engineering A 353 1
[3] Antczzak G and Ehrlich G 2005 Surface Science Reports 589 52
[4] Evans J W, Thiel P A and Barttelt M C 2006 Surface Science Reports 61 1
[5] Yang H, Sun Q, Zhang Z and Jia Y 2007 Phys. Rev. B 76 115417
[6] Wang C, Zhang Y and Jia Y 2011 Appl. Surf. Sci. 257 9329
[7] Kellogg G L 1994 Phys. Rev. Lett. 73 1833
[8] Wang S C, Kurpick U and Ehrlich G 1998 Phys. Rev. Lett. 81 4923
[9] Kyuno K and Ehrlich G 1999 Surface Science 437 29
[10] Fu T Y, Hwang Y J and Tsong T T 2003 Appl. Surf. Sci. 219 143
[11] Papathanakos V and Evangelakis G A 2002 Surface Science 499 229
[12] Liu Q W, Sun Z H, Ning X J, Li Y F, Liu L and Zhuang J 2004 Surface Science 554 25
[13] Wang C Q, Zhang Y S and Jia Y 2009 Solid State Science 11 1661
[14] Flores J C, Aguilar B H, Coronado A M and Huang H C 2007 Surface Science 601 931
[15] Yang J Y, Hu W Y and Xu M C 2008 Appl. Surf. Sci. 255 1736
[16] Wang C Q, Yang Y X, Zhang Y S and Jia Y 2010 Computational Materials Science 50 291
[17] Wang C, Qin Z, Zhang Y, Sun Q and Jia Y 2012 Appl. Surf. Sci. 258 4294
[18] Pun G P P and Mishin Y 2007 Defect Diffusion Fourm 266 49
[19] Pun G P P and Mishin Y 2009 Acta Materialia 57 5531
[20] Cai Y, Bai Z, Chintalapati S, Zeng Q and Feng Y P 2013 J. Chem. Phy. 138 154711
[21] Cai Y, Bai Z, Pan H, Feng Y P, Yakobson B I and Zhang Y W 2014 Nanoscale 6 1691
[22] Tang J and Yang J 2011 Physica B 406 2543
[23] Liu C L and Adams J B 1992 Surface Science 265 262
[24] Liu C L and Adams J B 1993 Surface Science 294 211
[25] Papanicolaou N I, Evangelakis G A and Kallinteris G C 1998 Computational Material Science 10 105
[26] Burne H, Bromann K, Roder H, Kern K, Jacobsen J and Norskov J 1995 Phys. Rev. B 52 R14380
[27] Liu C L, Cohen J M, Adams J B and VoterA F 1991 Surface Science 253 334
[28] Boisvert G and Lewis L J 1996 Phys. Rev. B 54 2880
[29] Boisvert G, Lewis L J, Puska M J and Nieminen R M 1995 Phys. Rev. B 52 9078
[30] Jones G W, Marcano J M, Norskov J K and Venables J A 1990 Phys. Rev. Lett. 65 3317
[31] Ratsch C, Seitsonen A P and Scheffler M 1997 Phys. Rev. B 55 6750
[32] Zhang J H, Zhang Y, Wen Y H and Zhu Z Z 2010 Computational Material Science 48 250
[33] Hayat S S, Rehman Z, Hussain G and Hassan N 2011 Chin. J. Phys. 49 1264
[34] Wang C, Zhang Y and Jia Y 2011 Appl. Surf. Sci. 257 9329
[35] Wang C, Wang F, Zhang Y, Sun Q and Jia Y 2012 Appl. Surf. Sci. 261 873
[36] Elkoraychy E, Sbiaai K, Mazroui M, Boughaleb Y and Ferrando R 2015 Surface Science 635 64
[37] Mińkowski M, Magdalena A and Kotur Z 2015 Surface Science 642 22
[38] Barnard P E, Terblans J J and Swart H H 2015 Appl. Surf. Sci. 356 213
[39] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[40] Sheng H W, Kramer M J, Cadien A, Fujita T and Chen M W 2011 Phys. Rev. B 83 134118
[41] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[42] Fujita T, Guan P F, Sheng H W, Inoue A, Sakurai T and Chen M W 2010 Phys. Rev. B 81 140204
[43] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207
[44] Plimpton S J 1995 J. Comput. Phys. 117 1
[45] Visual Molecular dynamics (VMD) http://www.ks.uiuc.edu
[46] Karim A, Ahlam N, Rawi A, KaraA and Rahman T S 2006 Phys. Rev. B 73 165411
[1] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[2] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[3] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[4] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[5] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[8] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[9] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[10] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
[11] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[12] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[13] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[14] Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(2): 027101.
[15] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
No Suggested Reading articles found!