Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074206    DOI: 10.1088/1674-1056/25/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber

Wei Wang(王伟)1,2, Xin-Ying Bi(毕新英)1,2, Jun-Qi Wang(王珺琪)1,2, Yu-Wei Qu(屈玉玮)1,2, Ying Han(韩颖)1,2, Gui-Yao Zhou(周桂耀)1,2, Yue-Feng Qi(齐跃峰)1,2
1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2 The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao 066004, China
Abstract  Raman soliton self-frequency shifted to mid-infrared band (λ> 2 μ) has been achieved in an air-silica microstructure fiber (MF). The MF used in our experiment has an elliptical core with diameters of 1.08 and 2.48 μ for fast and slow axis. Numerical simulation shows that each fundamental orthogonal polarization mode has two wide-spaced λZDW and the λZDW pairs located at 701/2110 nm and 755/2498 nm along the fast and slow axis, respectively. Using 810-nm Ti:sapphire femtosecond laser as pump, when the output power varies from 0.3 to 0.5 W, the furthest red-shift Raman solitons in both fast and slow axis shift from near-infrared band to mid-infrared band, reaching as far as 2030 and 2261 nm. Also, mid-infrared Raman solitons can always be generated for pump wavelength longer than 790 nm if output pump power reaches 0.5 W. Specifically, with pump power at 0.5 W, the mid-infrared soliton in slow axis shifts from 2001 to 2261 nm when the pump changes from 790 nm to 810 nm. This means only a 20 nm change of pump results in 260 nm tunability of a mid-infrared soliton.
Keywords:  Raman soliton      soliton self-frequency shift      mid-infrared      microstructure fiber  
Received:  08 October 2015      Revised:  29 January 2016      Published:  05 July 2016
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.-k (Nonlinear optics)  
  42.25.Lc (Birefringence)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405172, 61405173, and 61275093), the Natural Science Foundation of Hebei Province, China (Grant No. F2014203194), the College Science Research Program of Hebei Province, China (Grant No. QN20131044), and the Program of Independent Research for the Young Teachers of Yanshan University of China (Grant No. 13LGB017).
Corresponding Authors:  Wei Wang     E-mail:  wangwei@ysu.edu.cn

Cite this article: 

Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰) Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber 2016 Chin. Phys. B 25 074206

[1] Zlatanovic S, Park J S, Moro S, Boggio J M C, Divliansky I B, Alic N, Mookherjea S and Radic S 2010 Nat. Photon. 4 561
[2] Nodop D, Jauregui C, Schimpf D, Limpert J and Tünnermann A 2009 Opt. Lett. 34 3499
[3] Wei K H, Jing P P, Wu B, Chen T and Shen Y H 2015 Chin. Phys. B 24 024217
[4] Chen Q J, Zhou G Y, Shi F K, Li D M, Yuan J H, Xia C M and Ge S 2015 Acta Phys. Sin. 64 034215 (in Chinese)
[5] Dutta B and Helbing J 2015 Opt. Express 23 16449
[6] Khlebtsov N G 2008 Quant. Electron. 38 504
[7] Barghoorn P, Stebani U and Balsam M 1998 Adv. Mater. 10 635
[8] Bennett P J, Monro T M and Richardson D J 1999 Opt Lett. 24 1203
[9] Liu S and Li S G 2013 Chin. Phys. B 22 074206
[10] Li D M, Zhou G Y, Xia C M, Wang C and Yuan J H 2014 Chin. Phys. B 23 044209
[11] Brian W, Stephen R and Robert W 2002 Opt. Express 10 575
[12] Kang Z, Yuan J H, Li S, Xie S L, Yan B B, Sang X Z and Yu C X 2013 Chin. Phys. B 22 114211
[13] Washburn B R, Ralph S E, Lacourt P A, Dudley J M, Rhodes W T, Windeler R S and Coen S 2001 Electron. Lett. 37 1510
[14] Liu X, Xu C, Knox W H, Chandalia J K, Eggleton B J, Kosinski S G and Windeler R S 2001 Opt. Lett. 26 358
[15] Masip M E, Rieznik A A, König P G, Grosz D F, Bragas A V and Martinez O E 2009 Opt. Lett. 34 842
[16] Cheng T L, Kanou Y, Asano K, Deng D H, Liao M S and Matsumoto M 2014 Appl. Phys. Lett. 104 121911
[17] Ortigosa-Blanch A, Knight J C and Russell P S J 2002 J. Opt. Soc. Am. B 19 2567
[18] Yu Y, Jia W G, Yan Q, Men K N and Zhang J P 2015 Acta Phys. Sin. 64 054207 (in Chinese)
[19] Wang H C, Ling D X and He Y J 2015 Chin. Phys. Lett. 32 074203
[20] Batian T 1985 Appl. Opt. 23 4477
[1] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[2] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[3] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[4] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[5] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[6] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[7] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[8] Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm
Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 124207.
[9] Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers
Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2017, 26(10): 104206.
[10] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[11] Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal
Tao Chen(陈滔), Rong Shu(舒嵘), Ye Ge(葛烨), Zhuo Chen(陈卓). Chin. Phys. B, 2016, 25(1): 014209.
[12] Spectroscopic properties of heavily Ho3+-doped barium yttrium fluoride crystals
Ji En-Cai, Liu Qiang, Nie Ming-Ming, Luo Hui, Hu Yu-Xi, Guan Zhou-Guo, Gong Ma-Li. Chin. Phys. B, 2015, 24(9): 094216.
[13] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha, Wang Jian-Ping, Kang Zhe, Yu Chong-Xiu. Chin. Phys. B, 2015, 24(8): 084212.
[14] Fiber laser pumped burst-mode operated picosecond mid-infrared laser
Wei Kai-Hua, Jiang Pei-Pei, Wu Bo, Chen Tao, Shen Yong-Hang. Chin. Phys. B, 2015, 24(2): 024217.
[15] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan, Zhou Gui-Yao, Li Jian-She, Zhang Zhi-Yuan, Han Ying. Chin. Phys. B, 2014, 23(8): 084208.
No Suggested Reading articles found!