Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067201    DOI: 10.1088/1674-1056/25/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor

M Dongol1, M M El-Nahass2, A El-Denglawey1,3, A A Abuelwafa1,4, T Soga4
1 Nano and Thin Film Laboratory, Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
2 Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt;
3 Physics Department, Faculty of Applied Medical Science, Taif University, Turabah 21995, Kingdom of Saudi Arabia;
4 Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Abstract  

Alternating current (AC) conductivity and dielectric properties of thermally evaporated Au/PtOEP/Au thin films are investigated each as a function of temperature (303 K-473 K) and frequency (50 Hz-5 MHz). The frequency dependence of AC conductivity follows the Jonscher universal dynamic law. The AC-activation energies are determined at different frequencies. It is found that the correlated barrier hopping (CBH) model is the dominant conduction mechanism. The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model. Coulombic barrier height Wm, hopping distance Rω, and the density of localized states N(EF) are valued at different frequencies. Dielectric constant ε1(ω,T) and dielectric loss ε2(ω,T) are discussed in terms of the dielectric polarization process. The dielectric modulus shows the non-Debye relaxation in the material. The extracted relaxation time by using the imaginary part of modulus (M") is found to follow the Arrhenius law.

Keywords:  PtOEP thin films      AC conductivity      dielectric constants      organic semiconductors      solar cell      nano materials  
Received:  31 October 2015      Revised:  24 January 2016      Accepted manuscript online: 
PACS:  72.15.-v (Electronic conduction in metals and alloys)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.63.b  
  73.50.h  
Corresponding Authors:  A El-Denglawey     E-mail:  denglawey@lycos.com

Cite this article: 

M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor 2016 Chin. Phys. B 25 067201

[1] Trogler W C and Choy H C 2013 Organic Solar Cells Materials and Device Physics p. 250
[2] Dongol M, El-Denglawey A, Elhady A F and Abuelwafa A A 2015 Appl. Phys. A 118 345
[3] Schon J H, Kloc C and Batlogg B 2001 Phys. Rev. Lett. 86 3843
[4] Perepichka D F, BryceM R, Batsanov A S, McInnes E J L, Zhao J P and Farley R D 2002 Chem. Eur. J. 8 4656
[5] Brütting W 2005 Physics of Organic Semiconductors (WILEY-VCH: Verlag GmbH & Co. KGaA)
[6] Toal S J and Trogler W C 2006 J. Mater. Chem. 16 2871
[7] Dongol M, El-Nahass M M, El-Denglawey A, Elhady A F and Abuelwafa A A 2012 Curr. Appl. Phys. 12 1178
[8] Dongol M, El-Denglawey A, Elhady A F and Abuelwafa A A 2012 Curr. Appl. Phys. 12 1334
[9] Li X, Zhang C, Wu Y, Zhang H, Wang W, Yuan L, Yang H, Liu Z and Chen H 2015 Int. J. Mol. Sci. 16 27707
[10] Lee C, Hwang I, Byeon C C, Kim B H and Greenham N C 2010 Adv. Funct. Mater. 20 2945
[11] Tsuboi T, Wasai Y and Gabain N 2006 Thin Solid Films 496 674
[12] Xiong K, Hou L, Wang P, Xia Y, Chen D and Xiao B 2014 J. Lumin. 151 193
[13] Eldenglawey A 2013 Structural, optical and electrical properties of As-Se-Tl films: Physical properties of As-Se-Tl films (LAP LAMBERT Academic Publishing) p. 85
[14] Darwish A A A, El-Nahass M M and Bekheet A E 2014 J. Alloys Compd. 586 142
[15] Mohamed R I 2000 J. Phys. Chem. Solids 61 1357
[16] El-Nahass M M, Atta A A, Kamel M A and Huthaily S Y 2013 Vacuum 91 14
[17] Elliott S R 1979 Phil. Mag. B 40 507
[18] Zeyada H M, El-Nahass M M and Makhlouf M M 2011 Curr. Appl. Phys. 11 1326
[19] El-Nahass M M, Metwally H S, El-Sayed H E A and Hassanien A M 2012 Mater. Chem. Phys. 133 649
[20] El-Nahass M M, Farag A A M, Abu-Samaha F S H and Elesh E 2014 Vacuum 99 153
[21] El-Nahass M M, Atta A A, El-Zaidia E F M, Farag A A M and Ammar A H 2014 Mater. Chem. Phys. 143 490
[22] Nawar A M, Abd El-Khalek H M and El-Nahass M M 2015 Org. Opto-Elect. 1 25
[23] Abuelwafaa A A, El-Denglawey A, Dongol M, El-Nahass M M and Soga T 2016 J. Alloys Compd. 655 415
[24] Abuelwafaa A A, El-Denglawey A, Dongol M, El-Nahass M M and Soga T 2015 Opt. Mater. 49 271
[25] Tolansky T 1948 Multiple-Beam Interferometry of Surface and Films (London: Oxford University Press) p. 125
[26] Jonscher A K 1977 Nature 267 673
[27] Elliott S R 1987 Adv. Phys. 36 135
[28] Long A R 1982 Adv. Phys. 31 553
[29] Elliott S R 1977 Philos. Mag. B 36 1291
[30] Elliott S R 1978 Philos. Mag. B 37 135
[31] Shimakawa K and Kondo A 1983 Phys. Rev. B 72 1136
[32] Pike G E 1972 Phys. Rev. B 6 1572
[33] Atyia H E 2014 Acta Phys. Pol. A 125 98
[34] Kahouli A, Sylvestre A, Jomni F, Yangui B and Legrand J 2012 J. Phys. Chem. A 116 1051
[35] Austin I G and Mott N F 1969 Adv. Phys. 18 41
[36] Macedo P B, Moynihan C T and Laberge N L 1973 Phys. Chem. Glasses 14 122
[37] Macedo P B, Moynihan C T and Bose R 1972 Phys. Chem. Glasses 13 171
[38] Wonga Y J, Hassan J and Hashim M 2013 J. Alloys Compd. 571 138
[39] El-Nahass M M and Ali H A M 2012 Solid State Commun. 152 1084
[40] Dakhel A A 2006 Thin Solid Films 496 353
[41] Chen R H, Chang R Y and Shern S C 2002 J. Phys. Chem. Solids 63 2069
[42] Chen R H, Shern S C and Fukami T 2002 J. Phys. Chem. Solids 63 203
[43] Farag A A M, Mansour A M, Ammar A H, Abdel Rafea M and Farid A M 2012 J. Alloys Compd. 513 404
[44] Yakuphanoglu F, Aydogdu Y, Schatzschneider U and Rentschler E 2003 Solid State Commun. 128 63
[45] El-Menyawy E M, Zeyada H M and El-Nahass M M 2010 Solid State Sci. 12 2182
[46] El-Nahass M M, Kamal H, Elshorbagy M H and Abdel-Hady K 2013 Org. Electron. 14 2847
[47] Ayouchi R, Leien D, Martin F, Gabas M, Dalchiele E and Barrodo J R 2003 Thin Solid Films 68 426
[48] Rhouma F H I, Dhahri A, Dhahri J and Valente M A 2012 Appl. Phys. A 108 593
[49] Hegab N A and El-Mallah H M 2009 Acta Phys. Pol. A 116 1048
[50] Atyia H E Hegab N A, Affi M A and Ismail M A 2013 J. Alloys Compd. 574 345
[51] Atyia H E 2014 J. Nonlinear Cryst. Solids 391 83
[52] Atyia H E, Farid A M and Hegab N A 2008 Physica B 403 3980
[53] Yahia I S, Hegab N A, Shakra A M and AL-Ribaty A M 2012 Physica B 407 2476
[54] Stevels J M 1975 Handbuch der Physik. In: Flugge (Berlin: Springer) p. 108
[55] El-Nahass M M, Ali H A M, Saadeldin M and Zaghllol M 2012 Physica B 407 4453
[56] Smyth P 1965 Dielectric Behavior and Structure (New York: McGraw-Hill)
[57] Barsoum M 1997 Fundamental of Ceramics (London: McGraw Hill) p. 215
[58] Tareev B 1975 Physics of Dielectric Materials (Moscow: Mir Publishers) p. 187
[59] Sharma A and Mehtaa N 2012 Eur. Phys. J. Appl. Phys. 59 10101
[60] Tabib A, Sdiri N, Elhouichet H and Fe'rid M 2015 J. Alloys Compd. 622 138
[61] Dult M, Kundu R S, Hooda J, Murugavel S, Punia R and Kishore N 2015 J. Non-Cryst. Solids 423-424 1
[62] Atif M and Nadeem M 2015 J. Alloys Compd. 623 447
[63] El-Menyawy E M, Zedan I T, Mansour A M and Nawar H H 2014 J. Alloys Compd. 611 50
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[9] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[10] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[11] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[12] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[13] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!