Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034208    DOI: 10.1088/1674-1056/25/3/034208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of the electromagnetic field inside an anomalous-dispersion microresonator under synthetical pump

Xin Xu(徐昕)1,2, Xiaohong Hu(胡晓鸿)1,2, Ye Feng(冯野)1,2, Yuanshan Liu(刘元山)1, Wei Zhang(张伟)1, Zhi Yang(杨直)1, Wei Zhao(赵卫)1, Yishan Wang(王屹山)1
1. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We study the spatiotemporal evolution of the electromagnetic field inside a microresonator showing an anomalous dispersion at the pump wavelength by using the normalized Lugiato-Lefever equation. Unlike the traditional single continuous wave (CW) pumping, an additional pump source consisting of periodical pulse train with variable repetition rate is adopted. The influences of the microresonator properties and the pump parameters on the field evolution and the electromagnetic field profile are analyzed. The simulation results indicate that, in the anomalous dispersion regime, both increases of the input pulse amplitude and the repetition frequency can result in the field profiles consisting of multiple peaks. A series of equidistant pulses can also be obtained by increasing the CW pump power. In addition, we find that a large physical detuning between the pump laser carrier and the cavity resonance frequency also causes the splitting of the inside field.
Keywords:  microcavity      nonlinear optics      Lugiato-Lefever equation      field evolution     
Received:  10 June 2015      Published:  05 March 2016
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Project supported by the National Major Scientific Instrumentation Development Program of China (Grant No. 2011YQ120022), CAS/SAFEA International Partnership Program for Creative Research Teams, China, and the National Natural Science Foundation of China (Grant No. 61275164).
Corresponding Authors:  Yuanshan Liu, Yishan Wang     E-mail:  liuyuanshan@opt.ac.cn;yshwang@opt.ac.cn

Cite this article: 

Xin Xu(徐昕), Xiaohong Hu(胡晓鸿), Ye Feng(冯野), Yuanshan Liu(刘元山), Wei Zhang(张伟), Zhi Yang(杨直), Wei Zhao(赵卫), Yishan Wang(王屹山) Theoretical analysis of the electromagnetic field inside an anomalous-dispersion microresonator under synthetical pump 2016 Chin. Phys. B 25 034208

[1] Yasui T, Yokoyama S, Inaba H, Minoshima K, Nagatsuma T and Araki T 2011 IEEE J. Sel. Topics Quantum Electron 17 191
[2] Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
[3] Cundiff S T and Weiner A M 2010 Nat. Photon. 4 760
[4] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[5] Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S and Jorgensen C G 2004 Opt. Express 12 4999
[6] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F and Jorgensen C G 2004 Opt. Lett. 29 250
[7] Swann W C, McFerran J J, Coddington, Newbury N R, Hartl I, Fermann M E, Westbrook P S, Nicholson J W, Feder K S and Fejer M M 2006 Opt. Lett. 31 3046
[8] McFerran J J, Nenadović L, Swann W C, Schlager J B and Newbury N R 2007 Opt. Express 15 13155
[9] Byun H, Sander M Y, Motamedi A, Shen H, Petrich G S, Kolodziejski L A, Ippen E P and Kärtner F X 2010 Appl. Opt. 49 5577
[10] Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L and Kippenberg T J 2011 Nat. Photon. 24 1
[11] Kippenberg T J, Spillane S M and Vahala K J 2004 Appl. Phys. Lett. 85 6113
[12] Vahala K J 2003 Nature 424 839
[13] Saha K, Okawachi Y, Shim B, Levy J S, Salem R, Johnson A R, Foster M A, Lamont M R E, Lipson M and Gaeta A L 2013 Opt. Express 21 1335
[14] Del'Haye P, Arcizet O, Schliesser A, Holzwarth R and Kippenberg T J 2008 Phys. Rev. Lett. 101 053903
[15] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
[16] Cao S and Xu X L 2014 Physics 43 740
[17] Li C F 2012 Physics 41 635
[18] Steinmetz T, Wilken T, Hauck C A, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, SchmidtW and Udem T 2008 Science 321 1335
[19] Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J and Koos C 2013 Nat. Photon. 8 375
[20] Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S and Maleki L 2005 Phys. Rev. Lett. 93 243905
[21] Chembo Y K, Strekalov D V and Yu N 2010 Phys. Rev. Lett. 104 103902
[22] Chembo Y K and Yu N 2010 Phys. Rev. A 82 033801
[23] Lamont M R E, Okawachi Y and Gaeta A L 2013 Opt. Lett. 38 3478
[24] Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37
[25] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2013 Nat. Photon. 8 145
[26] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[27] Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E and Moss D J 2010 Nat. Photon. 4 41
[28] Matsko A B, Savchenkov A A, Liang W, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2845
[29] Agha I H, Okawachi Y and Gaeta A L 2009 Opt. Express 17 16209
[30] Lugiato L A and Lefever R 1987 Phys. Rev. Lett. 25 2209
[31] Coen S and Erkintalo M 2013 Opt. Lett. 38 1790
[32] Parra-Rivas P, Gomila D, Matias M A, Coen S and Gelens L 2014 Phys. Rev. A 89 043813
[33] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
[34] Coen S and Haelterman M 2001 Opt. Lett. 26 39
[35] Hansson T, Modotto D and Wabnitz S 2013 Phys. Rev. A 88 023819
[36] Leo F, Gelens L, Emplit P, Haelterman M and Coen S 2013 Opt. Express 21 9180
[37] Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A 89 063814
[1] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[2] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[3] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[4] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[5] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[6] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[7] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[8] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[9] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[10] Nonlinear spectral cleaning effect in cross-polarized wave generation
Linpeng Yu(於林鹏), Yi Xu(许毅), Fenxiang Wu(吴分翔), Xiaojun Yang(杨晓骏), Zongxin Zhang(张宗昕), Yuanfeng Wu(吴圆峰), Yuxin Leng(冷雨欣), Zhizhan Xu(徐至展). Chin. Phys. B, 2018, 27(5): 054214.
[11] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[12] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[13] Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion
Xiaohong Hu(胡晓鸿), Wei Zhang(张伟), Yuanshan Liu(刘元山), Ye Feng(冯野), Wenfu Zhang(张文富), Leiran Wang(王擂然), Yishan Wang(王屹山), Wei Zhao(赵卫). Chin. Phys. B, 2017, 26(7): 074216.
[14] Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永). Chin. Phys. B, 2017, 26(5): 054216.
[15] Parallel generation of 31 tripartite entangled states based on optical frequency combs
Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国). Chin. Phys. B, 2017, 26(12): 124205.
No Suggested Reading articles found!