Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027301    DOI: 10.1088/1674-1056/25/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure

Liang-Liang Du(杜亮亮)1,2, Quan Li(李泉)2, Shao-Xian Li(李绍限)2, Fang-Rong Hu(胡放荣)1, Xian-Ming Xiong(熊显名)1, Yan-Feng Li(栗岩锋)1, Wen-Tao Zhang(张文涛)1, Jia-Guang Han(韩家广)2
1. College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, China;
2. Center for Terahertz Wave, Key Laboratory of Opto-electronic Information Technology, Ministry of Education, College of PrecisionInstrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  In this study, we propose and demonstrate a broadband polarization-independent terahertz modulator based on graphene/silicon hybrid structure through a combination of continuous wave optical illumination and electrical gating. Under a pump power of 400 mW and the voltages ranging from -1.8 V to 1.4 V, modulation depths in a range of -23%-62% are achieved in a frequency range from 0.25 THz to 0.65 THz. The modulator is also found to have a transition from unidirectional modulation to bidirectional modulation with the increase of pump power. Combining the Raman spectra and Schottky current-voltage characteristics of the device, it is found that the large amplitude modulation is ascribed to the electric-field controlled carrier concentration in silicon with assistance of the graphene electrode and Schottky junction.
Keywords:  terahertz      modulator      graphene  
Received:  21 August 2015      Revised:  15 October 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China, (Grant No. 61565004), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2013GXNSFDA019002 and 2014GXNSFGA118003), the Guangxi Scientific Research and Technology Development Program, China (Grant No. 1598017-1), the Guilin Scientific Research and Technology Development Program, China (Grant Nos. 20140127-1 and 20150133-3), and the Special Funds for Distinguished Experts of Guangxi Zhuang Autonomous Region, China.
Corresponding Authors:  Wen-Tao Zhang     E-mail:  gliezwt@163.com

Cite this article: 

Liang-Liang Du(杜亮亮), Quan Li(李泉), Shao-Xian Li(李绍限), Fang-Rong Hu(胡放荣), Xian-Ming Xiong(熊显名), Yan-Feng Li(栗岩锋), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广) Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure 2016 Chin. Phys. B 25 027301

[1] Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H and Pepper M 2002 Phys. Med. Biol. 47 3853
[2] Kawase K, Ogawa Y, Watanabe Y and Inoue H 2003 Opt. Express 11 2549
[3] Iwaszczuk K, Heiselberg H and Jepsen P U 2010 Opt. Express 18 26399
[4] Federici J and Moeller L 2010 J. Appl. Phys. 107 111101
[5] Horng J, Chen C F, Geng B S, Girit C, Zhang Y B, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R and Wang F 2011 Phys. Rev. B 83 165113
[6] Driscoll T, Palit S, Qazilbash M M, Brehm M, Keilmann F, Chae B G, Yun S J, Kim H T, Cho S Y, Jokerst N M, Smith D R and Basov D N 2008 Appl. Phys. Lett. 93 024101
[7] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G and Zhang W L 2012 Nat. Commun. 3 1151
[8] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[9] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[10] Ren L, Zhang Q, Yao J, Sun Z Z, Kaneko R, Yan Z, Nanot S, Jin Z, Kawayama I, Tonouchi M, Tour J M and Kono J 2012 Nano Lett. 12 3711
[11] Sensale-Rodriguez B, Yan R S, Rafique S, Zhu M D, Li W, Liang X L, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L and Xing H G 2012 Nano Lett. 12 4518
[12] Sensale-Rodriguez B, Yan R S, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
[13] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[14] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936
[15] Lee S H, Kim H D, Choi H J, Kang B, Cho Y R and Min B 2013 IEEE Trans. Terahertz Sci. Technol. 3 764
[16] Gao W L, Shu J, Reichel K, Nickel D V, He X W, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M and Xu Q F 2014 Nano Lett. 14 1242
[17] Mao Q, Wen Q Y, Tian W, Wen T L, Chen Z, Yang Q H and Zhang H W 2014 Opt. Lett. 39 5649
[18] Yu Q K, Jauregui L A, Wu W, Colby R, Tian J F, Su Z H, Cao H L, Liu Z H, Pandey D, Wei D G, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J M, Pei S S and Chen Y P 2011 Nat. Mater. 10 443
[19] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[20] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222
[21] Chen P Y and Alu A 2011 ACS Nano. 5 5855
[22] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[23] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[24] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G 2008 Appl. Phys. Lett. 92 042116
[25] Tomaino J L, Jameson A D, Kevek J W, Paul M J, van der Zande A M, Barton R A, McEuen P L, Minot E D and Lee Y S 2011 Opt. Express 19 141
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
No Suggested Reading articles found!