Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117312    DOI: 10.1088/1674-1056/25/11/117312
Special Issue: TOPICAL REVIEW — Topological electronic states
TOPICAL REVIEW—Topological electronic states Prev   Next  

Two-dimensional topological insulators with large bulk energy gap

Z Q Yang(杨中强)1,2, Jin-Feng Jia(贾金锋)1,2, Dong Qian(钱冬)1,2
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  

Two-dimensional (2D) topological insulators (TIs, or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional (1D) edge state. Carriers in the edge state have the property of spin-momentum locking, enabling dissipation-free conduction along the 1D edge. The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells. However, the 2D bulk gaps in those quantum wells are extremely small, greatly limiting potential application in future electronics and spintronics. Despite this limitation, 2D TIs with a large bulk gap attracted plenty of interest. In this paper, recent progress in searching for TIs with a large bulk gap is reviewed briefly. We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization.

Keywords:  two-dimensional topological insulators      large bulk energy gap      one-dimensional edge state  
Received:  14 July 2016      Revised:  09 September 2016      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.-m (Methods of electronic structure calculations)  
  73.61.Cw (Elemental semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1632272, 11574201, and 11521404). D. Q. acknowledges support from the Changjiang Scholars Program, China and the Program for Professor of Special Appointment (Eastern Scholar), China.

Corresponding Authors:  Dong Qian     E-mail:  dqian@sjtu.edu.cn

Cite this article: 

Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬) Two-dimensional topological insulators with large bulk energy gap 2016 Chin. Phys. B 25 117312

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[5] Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[6] Liu C, Hughes T, Qi X L, Wang L and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[7] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[8] Du L, Knez I, Sullivan G and Du R R 2015 Phys. Rev. Lett. 114 096802
[9] Hofmann P 2006 Prog. Surf. Sci. 81 191
[10] Koroteev Y M, Bihlmayer G, Chulkov E V and Blugel S 2008 Phys. Rev. B 77 045428
[11] Liu Z, Liu C X, Wu Y S, Duan W H, Liu F and Wu J 2011 Phys. Rev. Lett. 107 136805
[12] Li P and Luo W D 2016 Sci. Rep. 6 25423
[13] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[14] D'avilla M E, Xian L, Cahangirov S, Rubio A and Lay G L 2014 New J. Phys. 16 095002
[15] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[16] Liu C C, Jiang H and Yao Y G 2011 Phys. Rev. B 84 195430
[17] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[18] Zhou J J, Feng W, Liu C C, Guan S and Yao Y G 2014 Nano Lett. 14 4767
[19] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[20] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blugel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801
[21] Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L and Jia J F 2012 Phys. Rev. Lett. 109 016801
[22] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
[23] Sabater C, Gosalbez-Martinez D, Fernandez-Rossier J, Rodrigo J G, Untiedt C and Palacios J J 2013 Phys. Rev. Lett. 110 176802
[24] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard O, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[25] Li X, Huang W, Lv Y, Zhang K, Yang C, Zhang B, Chen Y B, Yao S, Zhou J, Lu M, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y and Xing D Y 2016 Phys. Rev. Lett. 116 176803
[26] Pauly C, Rasche B, Koepernik K, Liebmann M, Pratzer M, Richter M, Kellner J, Eschbach M, Kaufmann B, Plucinski L, Schneider C M, Ruck M, Brink J van den and Morgenstern M 2015 Nat. Phys. 11 338
[27] Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V, Büchner B, Koepernik K, Ortix C, Richter M and Brink J. van den 2013 Nat. Mater. 12 422
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[5] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[6] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[7] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[8] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[9] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[10] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[11] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[12] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[13] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[14] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[15] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
No Suggested Reading articles found!