Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108503    DOI: 10.1088/1674-1056/25/10/108503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET

Shweta Tripathi
Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad-211004, India
Abstract  In the present work, a two-dimensional(2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using two-dimensional (2D) ATLASTM device simulator to affirm and formalize the proposed device structure.
Keywords:  triple material symmetrical gate stack (TMGS) DG MOSFET      gate stack      short channel effect      drain induced barrier lowering      threshold voltage  
Received:  12 May 2016      Revised:  17 June 2016      Published:  05 October 2016
PACS:  85.30.Tv (Field effect devices)  
  85.30.-z (Semiconductor devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  12.39.Pn (Potential models)  
Corresponding Authors:  Shweta Tripathi     E-mail:  shtri@mnnit.ac.in

Cite this article: 

Shweta Tripathi A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET 2016 Chin. Phys. B 25 108503

[1] Wong H 2012 Nano-CMOS Gate Dielectric Engineering (New York: CRC Press) pp. 1-6
[2] Maiti CK and Maiti TK 2013 Strain-Engineered MOSFETs (New York: CRC Press) pp. 1-7
[3] Ishimaru, V 2008 Solid-State Electron. 52 1266
[4] International Technology Roadmap for semiconductors 2007
[5] Agrawal B 1994 Ph. D. Dissertation, Rensselare polytech. Inst. Troy, New York
[6] Chaudhry A and Kumar M J 2004 IEEE Transactions 4 99
[7] Chenming Hu 1996 International Conference on Electron Devices Meeting (IEDM 96), pp. 319-322
[8] Goel K, Saxena M, Gupta M and Gupta RS 2006 IEEE Trans. Electron Dev. 53 1623
[9] Razavi P and Orouji A A D 2008 Electronics Conference 11th International Biennial Baltic 83 6
[10] Chaves F A, Jimenez D, Ruiz F J, Godoy A and Suñé J 2012 IEEE Trans. Electron Dev. 59 2589
[11] Abdi M A, Djeffal F, Meguellati M and Arar D 2009 16th IEEE International Conference on Electronics, Circuits, and Systems Proceedings, December 13, 2009 pp. 892-895
[12] Razavi P and Orouji A A 2008 International Conference on Advances in Electronics and Micro-electronics (ENICS'08) pp. 11-14
[13] Pradhan K P, Mohapatra S K, Agarwal P K, Sahu P K, Behera D K and Mishra J 2013 Microelectronics and Solid State Electronics 2 1
[14] Alamgir M I, Gulib A U, Ahmed K M and Farzana E 2012 International Journal of Technology Enhancements and Emerging Engineering Research 1 96
[15] Li J, Liu H X, Li B, Gao L and Yuan B 2010 Chin. Phys. 19 107301
[16] Solomon P M, et al. 2003 IEEE Circuits and Devices Magazine 19 48
[17] Dao-Ming K, Qi L, Jun-Ning C, Shan G and Lei L 2006 ICSICT 06, Shanghai, China
[18] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[19] Oh S H, Monroe D and Hergenrother J M 2000 IEEE Electron Dev. Lett. 21 445
[20] Diagne B, Prégaldiny F, Lallement C, Sallese J M and Krummenacher F 2008 Solid-State Electron. 52 99
[21] Chen Q, Agrawal B and Meindl J D 2002 IEEE Trans. Electron Dev. 49 1086
[22] Tsormpatzoglou A, Dimitriadis C A, Clerc R, Pananakakis G and Ghibaudo G 2008 IEEE Trans. Electron Dev. 55 2512
[23] El Hamid H A, Iñíguez B and Guitart J R 2007 IEEE Trans. Anal. Electron Dev. 54 572
[24] Lundstrom M 1997 IEEE Electron Dev. Lett. 18 361
[25] Jankovic N D and Armstrong G A 2004 Microelectron. J. 35 647
[26] Dubey S, Tiwari P K and Jit S 2010 J. Appl. Phys. 108 034518
[1] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[2] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[3] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[4] Characteristics and threshold voltage model of GaN-based FinFET with recessed gate
Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(9): 097308.
[5] Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation
Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选). Chin. Phys. B, 2018, 27(2): 028501.
[6] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[7] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
[8] Analytical threshold voltage model for strained silicon GAA-TFET
Hai-Yan Kang(康海燕), Hui-Yong Hu(胡辉勇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 118501.
[9] Subthreshold behavior of AlInSb/InSb high electron mobility transistors
S. Theodore Chandra, N. B. Balamurugan, G. Lakshmi Priya, S. Manikandan. Chin. Phys. B, 2015, 24(7): 076105.
[10] Threshold switching uniformity in In2Se3 nanowire-based phase change memory
Chen Jian, Du Gang, Liu Xiao-Yan. Chin. Phys. B, 2015, 24(5): 057702.
[11] Influences of fringing capacitance on threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor
Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Chin. Phys. B, 2015, 24(3): 037303.
[12] Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal
Guan Rong-Hua, Ye Wen-Jiang, Xing Hong-Yu. Chin. Phys. B, 2015, 24(10): 106102.
[13] A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET
Shweta Tripathi. Chin. Phys. B, 2014, 23(11): 118505.
[14] Directly extracting both threshold voltage and series resistance from conductance-voltage curve for AlGaN/GaN Schottky diode
Lü Yuan-Jie, Feng Zhi-Hong, Gu Guo-Dong, Dun Shao-Bo, Yin Jia-Yun, Han Ting-Ting, Sheng Bai-Cheng, Cai Shu-Jun, Liu Bo, Lin Zhao-Jun. Chin. Phys. B, 2013, 22(7): 077102.
[15] Effect of substrate doping on the flatband and threshold voltages of strained-Si pMOSFET
Wang Bin, Zhang He-Ming, Hu Hui-Yong, Zhang Yu-Ming, Zhou Chun-Yu, Wang Guan-Yu, Li Yu-Chen. Chin. Phys. B, 2013, 22(2): 028503.
No Suggested Reading articles found!