Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108104    DOI: 10.1088/1674-1056/25/10/108104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface

Yong Jiang(蒋勇)1,3, Qiang Zhou(周强)1, Rong Qiu(邱荣)1, Xiang Gao(高翔)1, Hui-Li Wang(王慧丽)1, Cai-Zhen Yao(姚彩珍)2, Jun-Bo Wang(王俊波)1, Xin Zhao(赵鑫)1, Chun-Ming Liu(刘春明)3, Xia Xiang(向霞)3, Xiao-Tao Zu(祖小涛)3, Xiao-Dong Yuan(袁晓东)2, Xin-Xiang Miao(苗心向)2
1 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
3 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO2 laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO2 laser secondary treatment.
Keywords:  fused silica      CO2 laser      numerical simulation      secondary treatment  
Received:  29 January 2016      Revised:  22 June 2016      Accepted manuscript online: 
PACS:  81.40.Wx (Radiation treatment)  
  42.70.Ce (Glasses, quartz)  
  78.20.Bh (Theory, models, and numerical simulation)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505170, 61505171, and 51535003), the Joint Fund of the National Natural Science Foundation of China, the Chinese Academy of Engineering Physics (Grant No. U1530109), and the China Postdoctoral Science Foundation (Grant No. 2016M592709).
Corresponding Authors:  Xin-Xiang Miao     E-mail:  miaoxinxiang.714@163.com

Cite this article: 

Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向) Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface 2016 Chin. Phys. B 25 108104

[1] Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y and Zheng W G 2015 Chin. Phys. B 24 024220
[2] Sun X Y, Lei Z M, Lu X Q and Fan D Y 2014 Acta Phys. Sin. 63 134201 (in Chinese)
[3] Gao X, Feng G Y, Han J H and Zhai L L 2012 Opt. Express 20 22095
[4] Liu H J, Ye X, Zhou X D, Huang J, Wang F R, Zhou X Y, Wu W D, Jiang X D, Sui Z and Zheng W G 2014 Opt. Mater. 36 855
[5] Gallais L, Cormont P and Rullier J L 2009 Opt. Express 17 23488
[6] Cormont P, Gallais L, Lamaignére L, Rullier J L, Combis P and Hebert D 2010 Opt. Express 18 26068
[7] Mendez E, Nowak K M, Baker H J, Villarreal F J and Hall D R 2006 Appl. Opt. 45 5358
[8] Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, Lü H B and Zheng W G 2012 Chin. Phys. B 21 064219
[9] Jiang Y, Xiang X, Liu C M, Wang H J, Liao W, Lv H B, Yuan X D, Qiu R, Yang Y J and Zheng W G 2015 J. Non-Cryst. Solids 410 88
[10] During A, Bouchut P, Coutard J G, Leymarie C and Bercegol H 2006 Proc. SPIE 640323 640323
[11] Bai Y, Zhang L J, Liao W, Zhou H, Zhang C C, Chen J, Ye Y Y, Jiang Y L, Wang H J, Luan X Y, Yuan X D and Zheng W G 2015 Acta Phys. Sin. 65 024205 (in Chinese)
[12] Jiang Y, Xiang X, Liu C M, Yuan X D, Yang L, Yan Z H, Wang H J, Liao W, Lv H B and Zheng W G 2012 Chin. J. Lasers 39 61 (in Chinese)
[13] Vignes R M, Soules T F, Stolken J S, Settgast R R, Elhadj S and Matthews M J 2013 J. Am. Ceramic Soc. 96 137
[14] He S B, Jiang Y, Yuan X D, Wang H J, Liao W, Lv H B, Liu C M, Xiang X, Qiu R and Yang Y J 2014 Acta Phys. Sin. 63 068105 (in chinese)
[15] Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B and Zu X T 2011 Opt. Lasers Eng. 49 273
[16] Feit M D, Matthews M J, Soules T F, Stolken J S, Vignes R M, Yang S T and Cooke J D 2010 Proc. SPIE 7842 78420O
[1] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[4] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[5] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[6] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[7] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[10] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[11] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[12] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[13] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[14] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[15] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
No Suggested Reading articles found!