Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018801    DOI: 10.1088/1674-1056/25/1/018801
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Scientific and technological challenges toward application of lithium-sulfur batteries

Ya-Xia Yin(殷雅侠)1, Hu-Rong Yao(姚胡蓉)1,2, Yu-Guo Guo(郭玉国)1,2,3
1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shandong Wina Green Power Co., Ltd, Shouguang 262705, China
Abstract  

Recent progress in improving Li-S batteries' cathodes, anodes, and electrolytes via different approaches is summarized. The poor conductivity of sulfur cathodes, the dissolution of polysulfide intermediates, and the high reactivity of metal Li anodes currently motivate a great deal of research. Urgent challenges concerning Li anodes are also emphasized.

Keywords:  lithium-sulfur batteries      sulfur cathode      lithium anode      electrolyte  
Received:  11 May 2015      Revised:  29 June 2015      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
Fund: 

Project supported by the Ministry of Science and Technology (Grant Nos. 2012CB932900 and 2013AA050903), the National Natural Science Foundation of China (Grant Nos. 51225204 and U1301244), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA09010300).

Corresponding Authors:  Yu-Guo Guo     E-mail:  ygguo@iccas.ac.cn

Cite this article: 

Ya-Xia Yin(殷雅侠), Hu-Rong Yao(姚胡蓉), Yu-Guo Guo(郭玉国) Scientific and technological challenges toward application of lithium-sulfur batteries 2016 Chin. Phys. B 25 018801

[1] Guo Y G, Hu J S and Wan L J 2008 Adv. Mater. 20 2878
[2] Yin Y X, Xin S, Guo Y G and Wan L J 2013 Angew. Chem. Int. Ed. 52 13186
[3] D D Herbet J U 1962 U.S. Patent 3043896
[4] Ji X, Lee K T and Nazar L F 2009 Nat. Mater. 8 500
[5] Meyer B 1964 Chem. Rev. 64 429
[6] Li Z, Yuan L X, Yi Z Q, Sun Y M, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z L and Huang Y H 2014 Adv. Energy Mater. 4 1301473
[7] Wang Y, Huang Y, Wang W, Huang C, Yu Z, Zhang H, Sun J, Wang A and Yuan K 2009 Electrochim. Acta 54 4062
[8] Yuan L, Qiu X, Chen L and Zhu W 2009 J. Power Sources 189 127
[9] Xiong S, Xie K, Diao Y and Hong X 2012 Ionics 18 867
[10] Barchasz C, Molton F, Duboc C, Lepretre J C, Patoux S and Alloin F 2012 Anal. Chem. 84 3973
[11] Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews J C, Cui Y and Toney M F 2012 J. Am. Chem. Soc. 134 6337
[12] Canas N A, Wolf S, Wagner N and Friedrich K A 2013 J. Power Sources 226 313
[13] Walus S, Barchasz C, Colin J F, Martin J F, Elkaim E, Lepretre J C and Alloin F 2013 Chem. Commun. 49 7899
[14] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y and Kim H T 2003 J. Electrochem. Soc. 150 A796
[15] Zhang S S 2013 J. Power Sources 231 153
[16] Meyer B 1976 Chem. Rev. 76 367
[17] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G and Wan L J 2012 J. Am. Chem. Soc. 134 18510
[18] Xin S, Guo Y G and Wan L J 2012 Acc. Chem. Res. 45 1759
[19] Zheng G, Yang Y, Cha J J, Hong S S and Cui Y 2011 Nano Lett. 11 4462
[20] Tang C, Zhang Q, Zhao M Q, Huang J Q, Cheng X B, Tian G L, Peng H J and Wei F 2014 Adv. Mater. 26 6100
[21] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J and Zhang Y 2011 J. Am. Chem. Soc. 133 18522
[22] Zhao M Q, Zhang Q, Huang J Q, Tian G L, Nie J Q, Peng H J and Wei F 2014 Nat. Commun. 5 3410
[23] Zhou G, Li L, Wang D W, Shan X Y, Pei S, Li F and Cheng H M 2015 Adv. Mater. 27 641
[24] You Y, Zeng W, Yin Y X, Zhang J, Yang C P, Zhu Y and Guo Y G 2015 J. Mater. Chem. A 3 4799
[25] Xin S, Yin Y X, Wan L J and Guo Y 2013 Part. Part. Syst. Charact. 30 321
[26] Ye H, Yin Y, Xin S and Guo Y 2013 J. Mater. Chem. A 1 6602
[27] Yang C, Yin Y, Ye H, Jiang K, Zhang J and Guo Y 2014 ACS Appl. Mater. Interfaces 6 8789
[28] Zhang J, Ye H, Yin Y and Guo Y 2014 J. Energy Chem. 23 308
[29] Zhang K, Zhao Q, Tao Z and Chen J 2013 Nano Res. 6 38
[30] Sun X G, Wang X, Mayes R T and Dai S 2012 Chemsuschem 5 2079
[31] Mikhaylik Y, Kovalev I, Schock R, Kumaresan K, Xu J and Affinito J 2010 ECS Transactions 25 23
[32] Yoshimatsu I, Hirai T and Yamaki J 1988 J. Electrochem. Soc. 135 2422
[33] Gireaud L, Grugeon S, Laruelle S, Yrieix B and Tarascon J M 2006 Electrochem. Commun. 8 1639
[34] Cohen Y S, Cohen Y and Aurbach D 2000 J. Phys. Chem. B 104 12282
[35] Kanamura K, Tamura H, Shiraishi S and Takehara Z 1995 J. Electroanal. Chem. 394 49
[36] Xu K 2004 Chem. Rev. 104 4303
[37] Peled E 1979 J. Electrochem. Soc. 126 2047
[38] Aurbach D, Zinigrad E, Cohen Y and Teller H 2002 Solid State Ionics 148 405
[39] Leung K and Budzien J L 2010 Phys. Chem. Chem. Phys. 12 6583
[40] Kim S P, van Duin A C T and Shenoy V B 2011 J. Power Sources 196 8590
[41] Aurbach D 2000 J. Power Sources 89 206
[42] Aurbach D, Markovsky B, Levi M D, Levi E, Schechter A, Moshkovich M and Cohen Y 1999 J. Power Sources 81 95
[43] Li W, Zheng H, Chu G, Luo F, Zheng J, Xiao D, Li X, Gu L, Li H, Wei X, Chen Q and Chen L 2014 Faraday Discuss. 176 109
[44] Zheng J, Zheng H, Wang R, Ben L, Lu W, Chen L, Chen L and Li H 2014 Phys. Chem. Chem. Phys. 16 13229
[45] Selim R and Bro P 1974 J. Electrochem. Soc. 121 1457
[46] Aurbach D and Zaban A 1994 J. Electroanal. Chem. 367 15
[47] Xiong S, Xie K, Diao Y and Hong X 2014 J. Power Sources 246 840
[48] Su Y S and Manthiram A 2012 Nat. Commun. 3 1166
[49] Yao H, Yan K, Li W, Zheng G, Kong D, Seh Z W, Narasimhan V K, Liang Z and Cui Y 2014 Energy Environ. Sci. 7 3381
[50] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z and Wei F 2014 Energy Environ. Sci. 7 347
[51] Huang C, Xiao J, Shao Y, Zheng J, Bennett W D, Lu D, Saraf L V, Engelhard M, Ji L, Zhang J, Li X, Graff G L and Liu J 2014 Nat. Commun. 5 3343
[52] Lee Y M, Choi N S, Park J H and Park J K 2003 J. Power Sources 119 964 52B Li N W, Yin Y X, Yang C P and Guo Y G 2015 Adv. Mater.
[53] Li N W, Yin Y X, Yang C P and Guo Y G 2015 Adv. Mater.
[54] Demir-Cakan R, Morcrette M, Gangulibabu, Gueguen A, Dedryvere R and Tarascon J M 2013 Energy Environ. Sci. 6 176
[55] Yang C P, Yin Y, Zhang S F, Li NWand Guo Y G 2015 Nat. Commun. 6 8058
[56] Yan Y, Yin Y X, Xin S, Su J, Guo Y G and Wan L J 2013 Electrochim. Acta 91 58
[57] Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J and Yang Y 2014 J. Mater. Chem. A 2 11660
[58] Gao J, Lowe M A, Kiya Y and Abruna H D 2011 J. Phys. Chem. C 115 25132
[59] Suo L, Hu Y S, Li H, Armand M and Chen L 2013 Nat. Commun. 4 1481
[60] Mikhaylik Y V 2008 USA Patent: 7354680
[61] Lin Z, Liu Z, Fu W, Dudney N J and Liang C 2013 Adv. Funct. Mater. 23 1064
[62] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S and Affinito J 2009 J. Electrochem. Soc. 156 A694
[63] Xiong S, Xie K, Diao Y and Hong X 2012 Electrochim. Acta 83 78
[64] Zhang S S 2012 J. Electrochem. Soc. 159 A920
[65] Zu C and Manthiram A 2014 J. Phys. Chem. Lett. 5 2522
[66] Yan Y, Yin Y, Guo Y and Wan L J 2014 Sci. China Chem. 57 1564
[67] Zheng D L, Gu M, Wang C, Zhang J G, Liu J and Xiao J 2013 J. Electrochem. Soc. 160 A2288
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[3] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[4] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[5] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[6] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[7] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[8] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[9] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[10] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[11] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[12] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[13] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[14] A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte
Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2018, 27(7): 078201.
[15] Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
Wei Yang(杨伟), Qi-Di Wang(王启迪), Yu Lei(雷宇), Zi-Pei Wan(万子裴), Lei Qin(秦磊), Wei Yu(余唯), Ru-Liang Liu(刘如亮), Deng-Yun Zhai(翟登云), Hong Li(李泓), Bao-Hua Li(李宝华), Fei-Yu Kang(康飞宇). Chin. Phys. B, 2018, 27(6): 068201.
No Suggested Reading articles found!