Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 093402    DOI: 10.1088/1674-1056/24/9/093402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Charge transfer of He2+ with H in a strong magnetic field

Liu Chun-Lei, Zou Shi-Yang, He Bin, Wang Jian-Guo
Data Center for High Energy Density Physics Research, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  

By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2++H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models.

Keywords:  time-dependent Schrö      dinger equation      strong magnetic field      charge transfer     
Received:  03 December 2014      Published:  05 September 2015
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).

Corresponding Authors:  Liu Chun-Lei, He Bin     E-mail:  liuchunlei@iapcm.ac.cn;hebin-rc@163.com

Cite this article: 

Liu Chun-Lei, Zou Shi-Yang, He Bin, Wang Jian-Guo Charge transfer of He2+ with H in a strong magnetic field 2015 Chin. Phys. B 24 093402

[1] Garstang R H 1977 Rep. Prog. Phys. 40 105
[2] Rosner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B 17 29
[3] Kravchenko Y P and Liberman M A 1996 Phys. Rev. A 54 287
[4] Turbiner A V and Lopez V J C 2013 Phys. Rev. Lett. 111 163003
[5] Bibona S, Spagnolo B and Ferrante G 1984 J. Phys. B 17 1093
[6] Grosdanov T P, McDowell M R C and Zarcone M 1985 J. Phys. B 18 921
[7] Bivona S and McDowell M R C 1987 J. Phys. B 20 1541
[8] He B, Wang J G and Janev R K 2009 Phys. Rev. A 79 012706
[9] Shah M B and Gilbody H B 1978 J. Phys. B 11 121
[10] Nutt W L, McCullough R W, Brady K, Shah M B and Gilbody H B 1978 J. Phys. B 11 1457
[11] Hvelplund P and Andersen A 1982 Phys. Scr. 26 375
[12] Havener C C, Rejoub R, Krstic P S and Smith A C H 2005 Phys. Rev. A 71 042707
[13] Minami T, Lee T G, Pindzola M S and Schultz D R 2008 J. Phys. B 41 135201
[14] Feit M and Fleck Jr J 1983 J. Chem. Phys. 78 301
[15] Feit M, Fleck Jr J A and Steiger A 1982 J. Comput. Phys. 47 412
[16] Corey G C and Lemoine D 1992 J. Chem. Phys. 97 4115
[17] Dunseath K, Launary J, Terao-Dunseath M and Mouret L 2002 J. Phys. B 35 3539
[18] Zeng S L, Zou S Y and Yan J 2009 Chin. Phys. Lett. 26 053202
[19] Ning F F, He J F, Zeng S L, Zou S Y and Yan J 2011 Acta Phys. Sin. 60 043201 (in Chinese)
[1] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[2] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
[3] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[4] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[5] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schr\"odinger equation
Mi Chen(陈觅) and Zhen Wang(王振)†. Chin. Phys. B, 2020, 29(12): 120201.
[6] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎)1,†, Meng-Lan Shen(沈梦兰)2, Jie Li(李杰)3, and Xing-Ao Li(李兴鳌)1,†. Chin. Phys. B, 2020, 29(12): 127303.
[7] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光), Kaifeng Chen(陈凯锋), Gang Wang(王岗), Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[8] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[9] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[10] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[11] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[12] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[13] Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation
Ming-Ming Li(李明明), Cheng-Lai Hu(胡成来), Jun Wu(吴俊), Xian-Jing Lai(来娴静), Yue-Yue Wang(王悦悦). Chin. Phys. B, 2019, 28(12): 120502.
[14] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[15] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
No Suggested Reading articles found!