Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084203    DOI: 10.1088/1674-1056/24/8/084203

Strong violations of locality by testing Bell's inequality with improved entangled-photon systems

Wang Yaoa, Fan Dai-Hea, Guo Wei-Jiea, Wei Lian-Fua b
a Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Bell's theorem states that quantum mechanics cannot be accounted for by any local theory. One of the examples is the existence of quantum non-locality is essentially violated by the local Bell's inequality. Therefore, the violation of Bell's inequality (BI) has been regarded as one of the robust evidences of quantum mechanics. Until now, BI has been tested by many experiments, but the maximal violation (i.e., Cirel'son limit) has never been achieved. By improving the design of entangled sources and optimizing the measurement settings, in this work we report the stronger violations of the Clauser–Horne–Shimony–Holt (CHSH)-type Bell's inequality. The biggest value of Bell's function in our experiment reaches to a significant one: S=2.772± 0.063, approaching to the so-called Cirel'son limit in which the Bell function value is S=2√2. Further improvement is possible by optimizing the entangled-photon sources.
Keywords:  quantum entanglement      coherent optical effects      Bell inequality  
Received:  23 November 2014      Revised:  28 January 2015      Published:  05 August 2015
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308008, 91321104, U1330201, and 11174373) and the Fundamental Research Funds for the Central Universities (Grant No. 2682014CX081).
Corresponding Authors:  Wei Lian-Fu     E-mail:

Cite this article: 

Wang Yao, Fan Dai-He, Guo Wei-Jie, Wei Lian-Fu Strong violations of locality by testing Bell's inequality with improved entangled-photon systems 2015 Chin. Phys. B 24 084203

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bohm D and Aharonov Y 1957 Phys. Rev. 108 1070
[3] Kuang L M and Sun Y H 2006 Chin. Phys. 15 681
[4] Bell J S 1964 Phys. 1 195
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Resch Z J, Lindenthal M, Blauensteiner B, Bohm H R, Fedrizzi A, Kurtsiefer C, Poppe A, Schmitt-Manderbach T, Taraba M, Ursin R, Walther P, Weier H, Weinfurter H and Zeilinger A 2005 Opt. Express 13 202
[7] Clauser J, Horne M, Shimony A and Holt R 1969 Phys. Rev. Lett. 23 880
[8] Clauser J and Home M 1974 Phys. Rev. D 10 526
[9] Clauser J and Shimony A 1978 Rep. Prog. Phys. 41 1881
[10] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[11] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
[12] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 1804
[13] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50
[14] Shin Y H and Alley C O 1988 Phys. Rev. Lett. 61 2921
[15] Rarity J and Tapster P 1990 Phys. Rev. Lett. 64 2495
[16] Kwiat P, Mattle K, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 4337
[17] Kwiat P, Waks E, Whit A, Appelbaum I and Eberhard P 1999 Phys. Rev. A 60 R773
[18] Huang Y F, Li C F, Zhang Y S and Guo G C 2001 Phys. Lett. A 287 317
[19] Aspelmeyer M, Bohm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resh K, Taraba M, Ursin R, Walther P and Zeilinger A 2003 Science 301 621
[20] Peng C Z, Yang T, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Lin N, Tian B L and Pan J W 2005 Phys. Rev. Lett. 94 150501
[21] Wang S K, Ren J G, Yang D, Peng C Z, Jiang S, Wang X B, Jin X M and Yang B 2008 Acta Phys. Sin. 57 1356 (in Chinese)
[22] Cirel's B S 1980 Lett. Math. Phys. 4 93
[23] Leonhardt U 1997 Measuring the Quantum States of Light (Cambridge: Cambridge University Press)
[25] James D, Kwiat P, Munro W and White A 2001 Phys. Rev. A 64 052312
[26] Fan D H, Guo W J and Wei L F 2012 J. Opt. Soc. Am. B 29 3429
[27] Press W, Flannery B, Teukolsky S and Vetterling W 1992 Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge: Cambridge University Press)
[28] Christensen B G, McCusker K T, Altepeter J B, Calkins B, Gerrits T, Lita A E, Miller A, Shalm L K, Zhang Y, Nam S W, BrunnerN, Lim C W, Gisin N and Kwiat P G 2013 Phys. Rev. Lett. 111 130406
[1] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[2] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[5] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[6] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[7] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[8] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[9] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[10] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[11] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[12] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[13] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[14] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
[15] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
No Suggested Reading articles found!