Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084203    DOI: 10.1088/1674-1056/24/8/084203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Strong violations of locality by testing Bell's inequality with improved entangled-photon systems

Wang Yao (王尧)a, Fan Dai-He (樊代和)a, Guo Wei-Jie (郭伟杰)a, Wei Lian-Fu (韦联福)a b
a Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Bell's theorem states that quantum mechanics cannot be accounted for by any local theory. One of the examples is the existence of quantum non-locality is essentially violated by the local Bell's inequality. Therefore, the violation of Bell's inequality (BI) has been regarded as one of the robust evidences of quantum mechanics. Until now, BI has been tested by many experiments, but the maximal violation (i.e., Cirel'son limit) has never been achieved. By improving the design of entangled sources and optimizing the measurement settings, in this work we report the stronger violations of the Clauser–Horne–Shimony–Holt (CHSH)-type Bell's inequality. The biggest value of Bell's function in our experiment reaches to a significant one: S=2.772± 0.063, approaching to the so-called Cirel'son limit in which the Bell function value is S=2√2. Further improvement is possible by optimizing the entangled-photon sources.
Keywords:  quantum entanglement      coherent optical effects      Bell inequality  
Received:  23 November 2014      Revised:  28 January 2015      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Ar  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308008, 91321104, U1330201, and 11174373) and the Fundamental Research Funds for the Central Universities (Grant No. 2682014CX081).
Corresponding Authors:  Wei Lian-Fu     E-mail:  weilianfu@gmail.com

Cite this article: 

Wang Yao (王尧), Fan Dai-He (樊代和), Guo Wei-Jie (郭伟杰), Wei Lian-Fu (韦联福) Strong violations of locality by testing Bell's inequality with improved entangled-photon systems 2015 Chin. Phys. B 24 084203

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bohm D and Aharonov Y 1957 Phys. Rev. 108 1070
[3] Kuang L M and Sun Y H 2006 Chin. Phys. 15 681
[4] Bell J S 1964 Phys. 1 195
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Resch Z J, Lindenthal M, Blauensteiner B, Bohm H R, Fedrizzi A, Kurtsiefer C, Poppe A, Schmitt-Manderbach T, Taraba M, Ursin R, Walther P, Weier H, Weinfurter H and Zeilinger A 2005 Opt. Express 13 202
[7] Clauser J, Horne M, Shimony A and Holt R 1969 Phys. Rev. Lett. 23 880
[8] Clauser J and Home M 1974 Phys. Rev. D 10 526
[9] Clauser J and Shimony A 1978 Rep. Prog. Phys. 41 1881
[10] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[11] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
[12] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 1804
[13] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50
[14] Shin Y H and Alley C O 1988 Phys. Rev. Lett. 61 2921
[15] Rarity J and Tapster P 1990 Phys. Rev. Lett. 64 2495
[16] Kwiat P, Mattle K, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 4337
[17] Kwiat P, Waks E, Whit A, Appelbaum I and Eberhard P 1999 Phys. Rev. A 60 R773
[18] Huang Y F, Li C F, Zhang Y S and Guo G C 2001 Phys. Lett. A 287 317
[19] Aspelmeyer M, Bohm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resh K, Taraba M, Ursin R, Walther P and Zeilinger A 2003 Science 301 621
[20] Peng C Z, Yang T, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Lin N, Tian B L and Pan J W 2005 Phys. Rev. Lett. 94 150501
[21] Wang S K, Ren J G, Yang D, Peng C Z, Jiang S, Wang X B, Jin X M and Yang B 2008 Acta Phys. Sin. 57 1356 (in Chinese)
[22] Cirel's B S 1980 Lett. Math. Phys. 4 93
[23] Leonhardt U 1997 Measuring the Quantum States of Light (Cambridge: Cambridge University Press)
[24] http://www.quantum-info.com/
[25] James D, Kwiat P, Munro W and White A 2001 Phys. Rev. A 64 052312
[26] Fan D H, Guo W J and Wei L F 2012 J. Opt. Soc. Am. B 29 3429
[27] Press W, Flannery B, Teukolsky S and Vetterling W 1992 Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge: Cambridge University Press)
[28] Christensen B G, McCusker K T, Altepeter J B, Calkins B, Gerrits T, Lita A E, Miller A, Shalm L K, Zhang Y, Nam S W, BrunnerN, Lim C W, Gisin N and Kwiat P G 2013 Phys. Rev. Lett. 111 130406
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!