Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077301    DOI: 10.1088/1674-1056/24/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Au and Ti induced charge redistributions on monolayer WS2

Zhu Hui-Li (朱会丽)a, Yang Wei-Huang (杨伟煌)b, Wu Ya-Ping (吴雅苹)c, Lin Wei (林伟)c, Kang Jun-Yong (康俊勇)c, Zhou Chang-Jie (周昌杰)a
a Department of Physics, School of Science, Jimei University, Xiamen 361021, China;
b Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University, 637371 Singapore;
c Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
Abstract  By using the first-principles calculations, structural and electronic properties of Au and Ti adsorbed WS2 monolayers are studied systematically. For Au-adsorbed WS2, metallic interface states are induced in the middle of the band gap across the Fermi level. These interface states origin mainly from the Au-6s states. As to the Ti adsorbed WS2, some delocalized interface states appear and follow the bottom of conduction band. The Fermi level arises into the conduction band and leads to the n-type conducting behavior. The n-type interface states are found mainly come from the Ti-3d and W-5d states due to the strong Ti–S hybridization. The related partial charge densities between Ti and S atoms are much higher and increased by an order of magnitude as compared with that of Au-adsorbed WS2. Therefore, the electron transport across the Ti-adsorbed WS2 system is mainly by the resonant transport, which would further enhances the electronic transparency when monolayer WS2 contacts with metal Ti. These investigations are of significant importance in understanding the electronic properties of metal atom adsorption on monolayer WS2 and offer valuable references for the design and fabrication of 2D nanodevices.
Keywords:  WS2      transition metal dichalcogenides      two-dimensional materials      first-principles calculations  
Received:  30 October 2014      Revised:  09 February 2015      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.05.Hd (Other semiconductors)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321102, 11304257, and 61227009), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2011J05006, 2009J05149, and 2014J01026), the Foundation from Department of Education of Fujian Province, China (Grant No. JA09146), Huang Hui Zhen Foundation of Jimei University, China (Grant No. ZC2010014), and the Scientific Research Foundation of Jimei University, China (Grant Nos. ZQ2011008 and ZQ2009004).
Corresponding Authors:  Zhou Chang-Jie     E-mail:  zhoucj@jmu.edu.cn

Cite this article: 

Zhu Hui-Li (朱会丽), Yang Wei-Huang (杨伟煌), Wu Ya-Ping (吴雅苹), Lin Wei (林伟), Kang Jun-Yong (康俊勇), Zhou Chang-Jie (周昌杰) Au and Ti induced charge redistributions on monolayer WS2 2015 Chin. Phys. B 24 077301

[1] Nagapriya K S, Goldbart O, Kaplan-Ashiri I, Seifert G, Tenne R and Joselevich E 2008 Phys. Rev. Lett. 101 195501
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[4] Eda G, Yamaguchi H, Voiry D, Fujita T and Chen M W 2011 Nano Lett. 11 5111
[5] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[6] Divigalpitiya W M R, Frindt R F and Morrison S R 1989 Science 246 369
[7] Zhan Y J, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966
[8] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[9] Matte H S S R, Maitra U, Kumar P, Rao B G, Pramoda K and Rao C N R 2012 Z. Anorg. Allg. Chem. 638 2617
[10] Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Houk T E M, Lopez-Urias F, Terrones H and Terrones M 2013 ACS Nano 7 5235
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[12] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74
[13] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[14] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[15] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[16] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[17] Popov I, Seifert G and Tomanek D 2012 Phys. Rev. Lett. 108 156802
[18] Kang J, Tongay S, Zhou J, Li J B and Wu J Q 2013 Appl. Phys. Lett. 102 012111
[19] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801
[20] Li X M, Long M Q, Cui L L, Xiao J and Xu H 2014 Chin. Phys. B 23 047307
[21] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[22] Zeng L, Xin Z, Chen S W, Du G, Kang J F and Liu X Y 2014 Chin. Phys. Lett. 31 027301
[23] Gatensby R, McEvoy N, Lee K, Hallam T, Berner N C, Rezvani E, Winters S, O'Brien M and Duesberg G S 2014 Appl. Surf. Sci. 297 139
[24] Huo N, Yang S, Wei Z, Li S S, Xia J B and Li J B 2014 Sci. Rep. 4 5209
[25] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[26] Slater J C 1951 Phys. Rev. 81 385
[27] Ceplerley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[28] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Schutte W J, Deboer J L and Jellinek F 1987 J. Solid State Chem. 70 207
[34] Wei J, Ma Z, Zeng H, Wang Z, Wei Q and Peng P 2012 AIP Adv. 2 042141
[35] Ma Y D, Dai Y, Guo M, Niu C, Lu J and Huang B 2011 Phys. Chem. Chem. Phys. 13 15546
[36] Frey G L, Tenne R, Matthews M J, Dresselhaus M S and Dresselhaus G 1998 J. Mater. Res. 13 2412
[37] Ballif C, Regula M, Schmid P E, Remškar M, Sanjinés R and Lévy F 1996 Appl. Phys. A 62 543
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[8] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
No Suggested Reading articles found!